K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Gọi UCLN(3n+2;2n+1) = d

Ta có : 3n+2 chia hết cho d  suy ra 6 n+4 chia hết cho d

           2n+1 chia hết cho d suy ra 6n+3 chia hết cho d

Do đó (6n+4)-(6n +3) chia hết cho d suy ra 6n+4-6n-3 chia hết cho d 

Suy ra 1 chia hết cho d suy ra d=1 hay với mọi n thuộc N thì 3n+2 và 2n+1 là hai số nguyên tố cùng nhau (đpcm)

27 tháng 3 2017

Gọi d \(\inƯC\left(3n+2,2n+1\right);d\in N\)*

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)

=> ( 6n + 4 ) - ( 6n + 3 ) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Vậy UCLN(3n+2,2n+1) = 1 với mọi n\(\in N\)

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94

17 tháng 11 2017

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}

7 tháng 4 2017

Giả sử \(ƯCLN\left(n,2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow2n+1-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,n\right)=1\)

Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
Gọi $d=(3n+3, 4n+9)$

$\Rightarrow 3n+3\vdots d; 4n+9\vdots d$
$\Rightarrow 3(4n+9)-4(3n+3)\vdots d$

$\Rightarrow 15\vdots d\Rightarrow d=1,3,5,15$

Vậy đề sai.

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

16 tháng 10 2016

Muốn chứng minh hai số là nguyên tố cùng nhau thì ta chứng minh ước chung lớn nhất của chúng bằng 1.

Thật vậy, Giả sử d là ước chung của 3n + 2 và 12n + 5 .

=> d là ước của 3n + 2 => d là ước của (3n+2).4 = 12n + 8 

=> d là ước của (12n + 8) - (12n + 5) = 3 => d là ước của 3n

=> d là ước của (3n + 2) - 3n = 2

Vì d vừa là ước của 3 và 2 nên d = 1.

21 tháng 11 2015

Đặt UCLN(n2 +3n + 1 , n + 1)= d

n + 1 chia hết cho d => n(n + 1) chia hết cho d

=>N 2 + n chia hết cho d 

=> (n2 + 3n + 1 - n2 - n) chia hết cho d

=> 2n + 1 chia hết cho d

n + 1 chia hết cho d => 2(N  + 1) chia hết cho d => 2n + 2 chia hết cho d

Mà UCLN(2n + 1 ; 2n + 2) = 1

Vậy n2 + 3n  + 1 và n +  1 là 2 số nguyên tố cùng nhau