K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

Muốn chứng minh hai số là nguyên tố cùng nhau thì ta chứng minh ước chung lớn nhất của chúng bằng 1.

Thật vậy, Giả sử d là ước chung của 3n + 2 và 12n + 5 .

=> d là ước của 3n + 2 => d là ước của (3n+2).4 = 12n + 8 

=> d là ước của (12n + 8) - (12n + 5) = 3 => d là ước của 3n

=> d là ước của (3n + 2) - 3n = 2

Vì d vừa là ước của 3 và 2 nên d = 1.

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

5 tháng 1 2016

Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
                      1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau

16 tháng 9 2017

a, Gọi ƯCLN(5n + 3, 3n + 2) = d

Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\) 

=> 15n + 10 - (15 n + 9) chia hết cho d

=> 1 chia hết cho d

=> d thuộc {1;-1}

Vậy...

b, Gọi ƯCLN(4n + 3, 6n + 4) = d

Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)

=> 12n + 9 - (12n + 8) chia hết cho d

=> 1 chia hết cho d

=> d thuộc {1;-1}

Vậy...

c, Gọi ƯCLN(12n + 5, 5n + 2) = d

Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)

=> 60n + 25 - (60n + 24) chia hết cho d

=> 1 chia hết cho d

=> d = {1;-1}

Vậy... 

16 tháng 9 2017

Gọi d là ƯCLN của 5n + 3 và 3n + 2

Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d

=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d

=> 15n + 10 - 15n - 9 = 1 chia hết cho d

=> d = 1

Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .  

23 tháng 12 2018

gọi uoc chung cua 3n + 4 va 4n+5 là x

ta co

3n+4chia het cho x suy ra 12n+16 chia het cho x

4n+5 chia het cho x suy ra 12n+15 chia het cho x

suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1

vay 4n+5 và 3n+4 nguyen to cung nhau

23 tháng 12 2018

Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)

suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.

Xét 3n+4 chia hết cho d

suy ra 4(3n+4) chia hết cho d

    hay 12n+16 chia hết cho d (1)

4n+5chia hết cho d

suy ra 3(4n+5) chia hết cho d

 hay 12n+15 chia hết cho d (2)

(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.

                                                   1 chia hết cho d

                                suy ra d=1  

 suy ra ƯCLN(3n+4,4n+5)=1

  Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau

14 tháng 7 2016

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

14 tháng 7 2016

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

13 tháng 9 2018

Gọi d là ước chung của 2n+1 và 3n+1

\(\Rightarrow2n+1⋮d,3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

31 tháng 12 2018

Gọi d là ước chung của 2n+1 và 3n+1

⇒2n+1⋮d,3n+1⋮d

⇒3(2n+1)−2(3n+1)⋮d

⇒6n+3−6n−2⋮d

⇒1⋮d⇒d=1.

Vậy với n∈Nthì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

29 tháng 12 2021

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

30 tháng 10 2023

TÔI KO BIẾT

 

21 tháng 11 2015

Đặt UCLN(n2 +3n + 1 , n + 1)= d

n + 1 chia hết cho d => n(n + 1) chia hết cho d

=>N 2 + n chia hết cho d 

=> (n2 + 3n + 1 - n2 - n) chia hết cho d

=> 2n + 1 chia hết cho d

n + 1 chia hết cho d => 2(N  + 1) chia hết cho d => 2n + 2 chia hết cho d

Mà UCLN(2n + 1 ; 2n + 2) = 1

Vậy n2 + 3n  + 1 và n +  1 là 2 số nguyên tố cùng nhau