Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(3n+4;n+1) là d.
=>3n+4 chia hết cho d và n+1 chia hết cho d.
=>3.(n+1) chia hết cho d
=>3n+4 ___________d và 3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.
Đặt d=ƯCLN(3n+1;5n+4)
=> (3n+1) chia hết cho d; (5n+4) chia hết cho d
=> (5n+4)-(3n+1) chia hết cho d
=> 3(5n+4)-5(3n+1) chia hết cho d
=>(15n+12)-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d thuộc {1;7}
=> d=7
Vậy WCLN(3n+1;5n+1)=7
Lưu ý bạn nên đổi chữ thuộc và chia hết thành dấu
có gì ko hiểu thì bạn hỏi mình nghe nếu mình đúng thì **** nha bạn
Giải:
Gọi \(d=UCLN\left(3n+2;5n+3\right)\)
Ta có:
\(3n+2⋮d\)
\(5n+3⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+10⋮d\)
\(15n+9⋮d\)
\(\Rightarrow15n+10-15n+9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)
\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau
Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n+2,5n+3)
Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .
Gọi d là ƯCLN của 3n+1 và 5n+4
=> 3n+1 chia hết cho d;5n+4 chia hết cho d
=> 15n+5 chia hết cho d;15n+12 chia hết cho d
=> (15n+12-15n+5) chia hết cho d
=> 7 chia hết cho d
=> d \(\in\) Ư(7) = {-1;1;7;-7}
Vậy ƯCLN của 3n+1 và 5n+4 là 7
ta thấy các cặp số nguyên tố cùng nhau chỉ có 2 số 2 và 3
nếu 3n+1 và 5n + 4 sẽ là 2 và 3 hoặc 3 và 2
mà 2 cặp số nguyên tố cùng nhau 2 và 3 có ƯCLN ( 2,3 ) = 1 =. ƯCLN ( 3n +1 ; 5n +4 ) là 1