K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7

Em ghi là đường  cao H là sai, phải ghi là BH mới đúng vì vậy Olm bảo em làm  sai em hiểu  chưa nhỉ?

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

BA=BD(Gt)

BH chung

Do đó: ΔAHB=ΔDHB(cạnh huyền-cạnh góc vuông)

Suy ra: AH=DH(hai cạnh tương ứng)

Xét ΔAKC vuông tại K và ΔEKC vuông tại K có 

CA=CE(gt)

CK chung

Do đó: ΔAKC=ΔEKC(Cạnh huyền-cạnh góc vuông)

Suy ra: KA=KE(Hai cạnh tương ứng)

Xét ΔADE có 

\(\dfrac{AH}{HD}=\dfrac{AK}{KE}\left(=1\right)\)

nên HK//DE(Định lí Ta lét đảo)

1 tháng 1 2018

A B C D K I M

a) ta có AM=MD (gt)

BM=MC (AM là trung tuyến của tam giác)

Mà AD cắt BC tai M

=> ABCD là hình bình hành

Mà \(\widehat{BAC}=90^{\sigma}\) (gt)

=> ABCD là hình chữ nhật

b) ta có \(BI\perp AD\) (gt)

lại có \(CK\perp AD\)  (gt)

=> BI // CK

bn coi lại câu c có sai đề k, nếu đúng thì mk chỉ lm đc 2 câu trên thôi!

Chọn mk nha

Gọi độ dài quãng đường AB là x

Theo đề, ta có: \(\dfrac{x}{35}=\dfrac{\dfrac{x}{2}}{35}+\dfrac{1}{4}+\dfrac{\dfrac{x}{2}}{40}\)

=>1/35x-1/70x-1/80x=1/4

=>x=2240

24 tháng 8 2019

Bài tập: Đường thẳng song song với một đường thẳng cho trước | Lý thuyết và Bài tập Toán 8 có đáp án

Vì BD, CE là đường cao của tam giác ABC nênBài tập: Đường thẳng song song với một đường thẳng cho trước | Lý thuyết và Bài tập Toán 8 có đáp án

do đó Δ BDC vuông tại D, Δ CEB vuông tại E.

Gọi M là trung điểm của BC

⇒ DM, EM là đường trung tuyến ứng với cạnh huyền của Δ BDC và Δ CEB.

Áp dụng tính chất của đường trung tuyến ứng với cạnh huyền của hai tam giác trên ta được:

Bài tập: Đường thẳng song song với một đường thẳng cho trước | Lý thuyết và Bài tập Toán 8 có đáp án

Từ giả thiết ta có tứ giác BHKC là hình thang vuông nên vẽ MI ⊥ DE thì BH//MI//CK ( 1 ) (vì cùng vuông góc với đường thẳng DE)

Mà ta có BM = MC ( 2 ) (do ta vẽ hình trên)

Từ ( 1 ),( 2 ) suy ra BH, MI, CK là ba đường thẳng song song cách đều nên chúng chắn trên đường thẳng HK hai đoạn thẳng liên tiếp bằng nhau là HI = IK ( 3 ).

Áp dụng tính chất của đường cao ứng với cạnh đáy của tam giác cân MDE ta được:

EI = ID ( 4 )

Trừ theo vế đẳng thức ( 3 ) cho ( 4 ), ta được: HE = DK.

17 tháng 8 2018

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vì BD, CE là đường cao của tam giác ABC nênBài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án do đó Δ BDC vuông tại D, Δ CEB vuông tại E.

Gọi M là trung điểm của BC

⇒ DM, EM là đường trung tuyến ứng với cạnh huyền của Δ BDC và Δ CEB.

Áp dụng tính chất của đường trung tuyến ứng với cạnh huyền của hai tam giác trên ta được:Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ DM = EM ⇒ Δ MDE cân tại M.

Từ giả thiết ta có tứ giác BHKC là hình thang vuông nên vẽ MI ⊥ DE thì BH//MI//CK    ( 1 ) (vì cùng vuông góc với đường thẳng DE)

Mà ta có BM = MC    ( 2 ) (do ta vẽ hình trên)

Từ ( 1 ),( 2 ) suy ra BH, MI, CK là ba đường thẳng song song cách đều nên chúng chắn trên đường thẳng HK hai đoạn thẳng liên tiếp bằng nhau là HI = IK    ( 3 ).

Áp dụng tính chất của đường cao ứng với cạnh đáy của tam giác cân MDE ta được:

EI = ID    ( 4 ).

Trừ theo vế đẳng thức ( 3 ) cho ( 4 ), ta được: HE = DK.