Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng đơn vị là a
- TH1: \(a=0\)
Chọn 4 vị trí còn lại và hoán vị chúng: \(A_8^4\) cách
- TH2: \(a=5\)
Chữ số hàng chục ngàn có 7 cách chọn (khác 5 và 0), 3 chữ số còn lại có \(A_7^3\) cách chọn và hoán vị \(\Rightarrow7.A_7^3\) số
Tổng cộng: \(A_8^4+7.A_7^3\) số
Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số
\(\overline{abcdef}\)
TH1: f=0
=>Có 8*7*6*5*4=6720 cách
TH2: f=5
=>Có 7*7*6*5*4=5880 cách
=>Có 6720+5880=12600 cách
Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )
TH1: f=0
=>Có 8*7*6*5*4=6720 cách
TH2: f=5
=>Có 7*7*6*5*4=5880 cách
=>Có 6720+5880=12600 cách
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
Gọi là số cần lập .
Vì x là số chẵn nên e ∈ {0; ;2; 4; 6}. Ta xét các trường hợp sau
e = 0 ⇒ e có 1 cách chọn
Số cách chọn là một chỉnh hợp của 6 phần tử
Số cách chọn các chữ số còn lại là
Do đó trường hợp này có tất cả số
e ≠ 0 ⇒ e có 3 cách chọn
Với mỗi cách chọn e ta có a ∈ A \ {0;e} nên có 5 cách chọn a.
Số cách chọn các số còn lại là:
Do đó trường hợp này có tất cả số
Vậy có tất cả: 360 + 900 = 1260 số thỏa yêu cầu bài toán.
Chọn A.
Ta thấy tổng 5 chữ số nhỏ nhất là \(1+2+3+4+5=15\)
Tổng 5 chữ số lớn nhất là \(3+4+5+6+7=25\)
Do đó tổng của 5 chữ số luôn nằm nữa 15 và 25. Do đó tổng đó chia hết cho 9 nên nó chỉ có thể là 18
Mặt khác tổng của 7 chữ số là \(1+2+3+4+5+6+7=28\)
Để có được tổng 18 ta cần loại đi 2 chữ số có tổng bằng \(28-18=10\)
Do đó có các trường hợp: loại cặp 3;7 còn 5 số 1;2;4;5;6 hoặc loại cặp 4;6 còn 5 số 1;2;3;5;7
Số số thỏa mãn:
\(3.4!+1.4!=96\) số
Có 4 cách chọn chữ số hàng đơn vị
Có\(A^4_7\) cách chọn và sắp xếp 4 chữ số còn lại
=> Có \(4A^4_7=3360\) số được tạo thành.