Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcdef}\)
TH1: f=0
=>Có 8*7*6*5*4=6720 cách
TH2: f=5
=>Có 7*7*6*5*4=5880 cách
=>Có 6720+5880=12600 cách
Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )
TH1: f=0
=>Có 8*7*6*5*4=6720 cách
TH2: f=5
=>Có 7*7*6*5*4=5880 cách
=>Có 6720+5880=12600 cách
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
Ta cần đếm số các số tự nhiên dạng , với a;b;c là các số phân biệt thuộc tập X.
Công đoạn 1: Chọn c ∈ X, để số tự nhiên chia hết cho 5 thì chỉ có 1 cách chọn c (c = 5).
Công đoạn 2: Chọn a ∈ X\{5} , có 5 cách.
Công đoạn 3: Chọn b ∈ X\{5;a} , có 4 cách.
Vậy theo quy tắc nhân, số các số tự nhiên thỏa mãn yêu cầu là: 1.5.4 = 20 số.
Chọn C.
Gọi số đó là \(\overline{abc}\)
TH1: \(c=0\Rightarrow\) bộ ab có \(5.4=20\) cách chọn
TH2: \(c=5\Rightarrow\) bộ ab có \(4.4=16\) cách chọn
Tổng cộng: \(20+16=36\) số thỏa mãn
Có 4 cách chọn chữ số hàng đơn vị
Có\(A^4_7\) cách chọn và sắp xếp 4 chữ số còn lại
=> Có \(4A^4_7=3360\) số được tạo thành.
Gọi chữ số hàng đơn vị là a
- TH1: \(a=0\)
Chọn 4 vị trí còn lại và hoán vị chúng: \(A_8^4\) cách
- TH2: \(a=5\)
Chữ số hàng chục ngàn có 7 cách chọn (khác 5 và 0), 3 chữ số còn lại có \(A_7^3\) cách chọn và hoán vị \(\Rightarrow7.A_7^3\) số
Tổng cộng: \(A_8^4+7.A_7^3\) số
Dạ em cảm ơn rất nhiều ạ