Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Mặt cầu (S) có tâm I(1;2;3) và bán kính R=3. Diện tích mặt cầu (S) là S=4π R²=36π.
Chọn B
Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.
IA = √6 < R nên A nằm trong mặt cầu.
Gọi r là bán kính đường tròn thiết diện, ta có
Trong đó h là khoảng cách từ I đến (P).
Diện tích thiết diện là
Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó là véc tơ pháp tuyến của (P).
Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0
Chọn A
Gọi I là tâm mặt cầu (S). Khi đó I (t; 1+t; 2+t) và ta có:
Vậy mặt cầu (S) có tâm I (1;2;3) và bán kính
Do đó mặt cầu (S) có phương trình:
Đáp án là A.
+ Mặt phẳng chứa Ox có dạng By+Cz=0
+ Do mặt cầu tiếp xúc với mặt phẳng nên 2 B - C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4y +3z=0
Đáp án A.
Mặt phẳng (P) có VTPT
Mặt cầu (S) có tâm Suy ra (Q) nhận I M → ( 3 ; 1 ; 0 ) làm VTPT
suy ra góc giữa (P), (Q) và
Chọn A
Mặt cầu (S) có tâm I (1; 2; -1) và bán kính R = 1
Gọi vectơ pháp tuyến của mặt phẳng (Q) là với
Mặt khác (Q) chứa trục hoành nên (Q) có phương trình dạng (Q): By + Cz = 0
Lại có (Q) tiếp xúc mặt cầu (S) nên
+ Với B = 0 thì phương trình mặt cầu là z = 0 ( chính là mặt phẳng 0xy)
+ Với 3B – 4C = 0, chọn B = 4 => C = 3. Vậy (Q): 4y + 3z = 0