Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB → = (−a; b; 0) và AC → = (−a; 0; c)
Vì AB → . AC → = a 2 > 0 nên góc ∠ BAC là góc nhọn.
Lập luận tương tự ta chứng minh được các góc ∠ B và ∠ C cũng là góc nhọn.
Đường thẳng d có vectơ chỉ phương \(\overrightarrow{u}\left(-2;2;1\right)\) và đi qua \(M\left(3;6;1\right)\)
Đường thẳng AB có vectơ chỉ phương \(\overrightarrow{AB}\left(-4;-2;5\right)\) và đi qua \(\overrightarrow{AM}\left(-1;4;-1\right)\)
Ta có \(\left[\overrightarrow{u},\overrightarrow{AB}\right]=\left(12;6;12\right)\Rightarrow\left[\overrightarrow{u},\overrightarrow{AB}\right].\overrightarrow{AM}=-12+24-12=0\)
Vậy ta có AB và d đồng phẳng.
\(C\in d\Rightarrow C\left(3-2t;6+2t;1+t\right)\)
Tam giác ABC cân tại A \(\Leftrightarrow AB=AC\)
\(\Leftrightarrow\left(1+2t\right)^2+\left(4+2t\right)^2+\left(1-t\right)^2=45\)
\(\Leftrightarrow9t^2-18t-27=0\)
\(\Leftrightarrow t=1\) hoặc \(t=-3\)
Vậy \(C\left(1;8;2\right)\) hoặc \(C\left(9;0;-2\right)\)
Đáp án C
Vì OA, OB, OC đôi một vuông góc với nhau 1 d 2 = 1 O A 2 + 1 O B 2 + 1 O C 2
Với d là khoảng cách từ O -> (ABC) suy ra 1 d 2 = 1 a 2 + 1 b 2 + 1 c 2
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức, ta có x 2 a + y 2 b + z 2 c ≥ x + y + z 2 a + b + c
Vậy d m a x = 1 3
\(\overrightarrow{AB}=\left(1-a;b;0\right);\overrightarrow{AC}=\left(1-a;0;c\right);\overrightarrow{HC}=\left(-2;-2;c-1\right);\overrightarrow{HB}=\left(-2;b-2;-1\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{HC}=0\\\overrightarrow{AC}.\overrightarrow{HB}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2\left(1-a\right)-2b=0\\-2\left(1-a\right)-c=0\end{matrix}\right.\) \(\Rightarrow c=2b=2\left(a-1\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(bc;c\left(a-1\right);b\left(a-1\right)\right)=\left(2\left(a-1\right)^2;2\left(a-1\right)^2;\left(a-1\right)^2\right)=\left(a-1\right)^2.\left(2;2;1\right)\)
A;B;C;H đồng phẳng
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right].\overrightarrow{HB}=0\Rightarrow2.\left(-2\right)+2.\left(-2\right)+1.\left(c-1\right)=0\)
\(\Rightarrow c=9\Rightarrow b=\dfrac{9}{2}\Rightarrow a=\dfrac{11}{2}\)
Ta có : \(\overrightarrow{AB}=\left(-a;b;0\right)\)
và \(\overrightarrow{AC}=\left(-a;0;c\right)\)
Vì \(\overrightarrow{AB}.\overrightarrow{AC}=a^2>0\) nên góc \(\widehat{BAC}\) là góc nhọn
Lập luận tương tự chứng minh được các góc \(\widehat{B}\) và \(\widehat{C}\) cũng là góc nhọn