Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng của n số tự nhiên chẵn đầu tiên khác 0 là :
\(2+4+6+...+2n\)
\(=2\left(1+2+3+...+n\right)\)
\(=2\cdot\frac{\left(1+n\right)\cdot n}{2}\)
\(=n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp
=> tổng của n số tự nhiên chẵn đầu tiên khác 0 không phải là số chính phương
Ta tính tổng n số lẻ đầu tiên:
S= 1+3+5+7+...+(2n-3)+(2n-1)
=> ta có 2 trường hợp sau:
TH1: n chẵn:
S=(1+2n-1)+(3+2n-3)+... có n/2 số hạng, mà mỗi số hạng có giá trị là 2n
Vậy S= 2n= n^2
TH2: n lẻ:
Để tính S ta cũng ghép như trường hợp trên nhưng ta đc số hạng ,mỗi số hạng có giá trị là 2n:
=> Tổng S= 2n+n=n^2
Vậy S= 1+3+5+7+...+(2n-3)+(2n-1)= n^2 nên S là 1 số chính phương.
Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương
Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương
Tick choa mik cái nào
Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương
Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương
Tổng: 1+2+3+4+...+n=\(\frac{n\left(n+1\right)}{2}\), vì (n,n+1)=1 nên \(\frac{n\left(n+1\right)}{2}\)không chính phương.
bạn Ha Trang không viết số không à bạn