K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

\(a\)1372143129301903
\(q^2+q+1\)9033011294321731
\(q\)xxx6421 (loại)x

 

17 tháng 10 2021

?????

NV
12 tháng 1

\(log_5125=log_55^3=3\)

\(log_6216=log_66^3=3\)

\(log_{10}\dfrac{1}{10000}=log_{10}10^{-4}=-4\)

\(log\sqrt{1000}=log_{10}10^{\dfrac{3}{2}}=\dfrac{3}{2}\)

\(81^{log_35}=3^{3log_35}=3^{log_3125}=125\)

\(125^{log_52}=5^{3log_52}=5^{log_58}=8\)

\(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}=7^{-2log_7\dfrac{1}{8}}=7^{log_764}=64\)

\(\left(\dfrac{1}{625}\right)^{log_52}=5^{-4log_52}=5^{log_5\dfrac{1}{16}}=\dfrac{1}{16}\)

NV
10 tháng 4 2022

Số số nguyên dương chia hết cho 7 là: \(S_1=\dfrac{994-7}{7}+1=142\)

Số số vừa chia hết cho 7 vừa chia hết cho 5 (nghĩa là chia hết 35): \(S_2=\dfrac{980-35}{35}+1=28\)

Số số vừa chia hết cho 7 vừa chia hết cho 2: \(S_3=\dfrac{994-14}{14}+1=71\)

Số số chia hết cho cả 7;2;5 là: \(S_4=\dfrac{980-70}{70}+1=14\)

Số số thỏa mãn yêu cầu đề bài: \(S_1+S_4-\left(S_2+S_3\right)=57\)

30 tháng 7 2019

2 nghìn +50 nghìn+20 nghìn

2 tháng 8 2019

cái này của olympia mà

7 tháng 3 2019

28 tháng 1

Ta thấy \(a=1000^{1001}\) 

\(=1000.1000^{1000}\) 

\(=1000^{1000}+1000^{1000}+...+1000^{1000}\) (1000 lần)

\(>1^1+2^2+...+1000^{1000}\)

 Nên \(a>c\)

 Lại có \(2^{2^{64}}=2^{2^4.2^{60}}=\left(2^{2^4}\right)^{2^{60}}\) \(>\left(2^{10}\right)^{2^{10}}=1024^{1024}>1000^{1001}\) nên \(b>a\)

 Vậy \(b>a>c\)

 

23 tháng 2 2018

Số chia hết cho 3 có dạng 3a ta có 0 < 3a 1000   0 < a < 333,3

Mà a nguyên nên có 333 số thỏa mãn

Số chia hết cho 5 có dạng 5b ta có 0 < 5b 1000   0 < b < 200

nên có 200 số thỏa mãn 

Số chia hết cho cả 3 và 5 có dạng 15c ta có 0 < 15c 1000   0 < c < 66,6

nên có 66 số thỏa mãn

Do đó số các số thỏa mãn đề bài là 333 + 200 – 66 =467.

Chọn D.