Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
câu a sai đề
b. Ta có : B = (2+1)(24+1)(28+1)(216+1)
⇒ 3B = 3(2-1)(2+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1)(216+1)
= 232-1
⇒ B = \(\dfrac{2^{32}-1}{3}\)
\(A=2^2-1^2+4^2-3^2+...+100^2-99^2\)
=(2-1)(2+1)+(4-3)(4+3)+...+(100-99)(100+99)
=1+2+3+4+...+99+100
=5050
Ta có :
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Ta có:
\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)
Do đó:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)
\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)
a) Ta có : $1.3+2.4+3.5+...+99.101+100.102$
$=(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)+...+(100-1)(100+1)+(101-1)(101+1)$
$=2^2-1+3^2-1+4^2-1+...+100^2-1+101^2-1$
$=(2^2+3^2+4^2+...+100^2+101^2)-100$
b) $1.100+2.99+3.98+...+99.2+100.1$
$=1.100+2.(100-1)+3.(100-2)+...+99.(100-98)+100.(100-99)$
$=100(1+2+3+...+99+100)-(1.2+2.3+...+99.100)$
$=100.\dfrac{101.100}{2}-\dfrac{99.100.101}{3}=171700$
tầm như của lớp 6dungfds hơn
A) A= -1^2+2^2-3^2+4^2...99^2+100^2
A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )
= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )
= 1 + 2 + 3 + 4 + ... + 99 + 100
= \(\frac{100.101}{2}=5050\)