Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1002 - 992 + 982 - 972 + . . . + 22 - 12
= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + . . . (2 - 1)(2 + 1)
= 199 + 195 + . . . + 3
= 5050
B = 3(22 + 1)(24 + 1) . . . (264 + 1) + 1
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)(264 + 1) + 1
= (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (28 - 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (216 - 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (232 - 1)(232 + 1)(264 + 1) + 1
= (264 - 1)(264 + 1) + 1
= 2128 - 1 + 1
= 2128
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\frac{100.\left(100+1\right)}{2}=5050\)
b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=...=\left(2^{64}-1\right)\left(2^{64}+1\right)+1^2=2^{128}-1^2+1^2=2^{128}\)
c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-2\left(a+b\right)^2\)
\(=2c^2\)
a/Có A=100^2+99^2+98^2+...+1^2 -2(99^2+97^2+..+1)
= Sigma(100)(x=1)(x^2) -2((1^2+2^2+3^2+..+99^2)-(2^2+4^2+...+98^2)
=Sigma(100)(x=1)(x^2)-2.Sigma(99)(x=1)(x^2)+4sigma(49)(x=1)(x^2)
=5050
b/bạn lấy 3=2^2-1 rồi dùng hiệu 2 bình nhé
c/tách ra được thôi
\(a.A=100^2-99^2+98^2-97^2+...+2^2-1\)
\(=100+99+98+97+...+2+1\)
\(=\frac{\left(100+1\right).100}{2}=5050\)(công thức tính dãy số hạng)
\(b.B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(=2^{4096}-1+1\)
\(=2^{4096}\)
\(c.\)Đặt\(a+b=d\)
Thay vào \(C\)ta được:
\(C=\left(d+c\right)^2+\left(d-c\right)^2-2d^2\)
\(=d^2+2dc+c^2+d^2-2dc+c^2-2d^2\)
\(=2c^2\)
A = 1002 - 992 + 982 - 972 + ...... + 22 - 12
= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )
= 1 + 2 + 3 + ......... + 99 + 100
= ( 100 + 1 ) . 100 : 2 = 5050
B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12
= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1
= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1
= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1
= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1
= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1
= ( 264 - 1 ) ( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2
= 2c2
Bài làm:
a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=100+99+98+97+...+2+1\)
\(A=\frac{\left(100+1\right)\times100}{2}=5050\)
b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
...
\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(B=2^{128}-1+1=2^{128}\)
c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(C=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2\left(ab-bc-ca\right)-2a^2-4ab-2b^2\)
\(=2c^2+2\left(ab+bc+ca+ab-bc-ca-2ab\right)\)
\(=2c^2+2.0=2c^2\)
Gợi ý : Áp dụng công thức : \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)( tự làm b;c nhé )
Tương tự : \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1+2+3+4+...+100\)
\(=\frac{100\left(100+1\right)}{2}=5050\)
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
=(1002 - 992)+ (982 - 972) + ... + (22 - 12)
=(100-99)(100+99)+...+(2-1)(2+1)
=100+99+...+2+1
=(100+1).100:1
=5050
b,B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
=(22−1)(22+1)(24+1)(28+1)....(264+1)+1
......
=(264-1)(264+1)+1
=2128−1+1=2128
c,C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
=a2+b2+c2+2ab+2ac+2bc+a2+b2+c2+2ab−2ac−2bc-2(a2+2ab+b2)
=2c2
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
=> A = (1002 - 992) + (982 - 972) + ... + (22 - 12)
=> A = (100 - 99)(100 + 99) + (98 - 97) (98 + 97) + ..... + 3
=> A = 100 + 99 + 98 + 97 + .... + 3
=> A = 5047
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
=> B = (22 - 1)(22 + 1) (24 + 1) ... (264 + 1) + 12
=> B = (24 - 1)(24 + 1) ... (264 + 1) + 12
=> B = (264 - 1)(264 + 1) + 12
=> B = 2128 - 1 + 1
=> B = 2128
a )\(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)
\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+....+2+1\)
\(=\frac{100\left(100+1\right)}{2}=5050\)
b ) \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1\)
\(=2^{128}\)
c ) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=\left(a^2+b^2+c^2+2ab+2bc+2ac\right)+\left(a^2+b^2+c^2+2ab-2bc-2ac\right)-2\left(a^2+2ab+b^2\right)\)
\(=2a^2+2b^2+2c^2+4ab-2a^2-4ab-2b^2\)
\(=2c^2\)