Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
umm, bn nhân A với 1/7 và nhân B với 1/9, sau đó tính ra và so sánh thôi
F = 7 + 72 + 73 + 74 + ..... + 7100
F= 7+(1+7)+73+(1+7)+...+799+(1+7)
F = 7x8+73x8+...+799x8
F= 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy F chia hết cho 8
M = 7 + 72 + 73 + 74 + ..... + 7100
M = 7+(1+7)+73+(1+7)+...+799+(1+7)
M = 7x8+73x8+...+799x8
M = 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy M chia hết cho 8
\(\text{Bài giải}\)
\(\text{Ta có : }\)
\(S=1+4+7+10+...+2020\)
\(\text{Nhìn vào dãy số ta thấy , hai số hạng liên tiếp nhau liền kề nhau hơn kém nhau 3 đơn vị.}\)
\(\text{Số số hạng trong dãy là :}\)
\(\left(2020-1\right)\text{ : }3+1=674\left(\text{Số hạng}\right)\)
\(\text{Tổng của dãy là :}\)
\(\left(2020+1\right)\cdot674\text{ : }2=681077\)
\(\text{Vậy : }S=681077\)
Có tất cả số các số là :
(2020-1):3+1=674(số)
Có tất cả số cặp là :
674:2=337(cặp)
Tổng S bằng :
(2020+1)*337=681077
Vậy tổng S=681077
\(S=3+5+7+...+2015\\ S=\left[\left(2015-3\right):2+1\right]:2\times\left(2015+3\right)\\ S=\left[2012:2+1\right]:2\times2018\\ S=1016063\)
Bài làm
\(S=\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{59.61}\)
\(S=7\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(S=7\left(\frac{1}{3}-\frac{1}{61}\right)\)
\(S=7\left(\frac{61}{183}-\frac{3}{183}\right)\)
\(S=7.\frac{58}{183}\)
\(S=\frac{406}{183}\)
S=2+4+6+...+98+100
S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)
S=1+2+3+4+...+2016+2017
S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)
1.Số lượng số của S= (2017-1)+1=2017 số
tổng=(2016+1).(2016:2)+2017=2 035 153
2.Số lượng số của S=(100-2):2+1=50 số
tổng=(100+2).(50:2)=2 550
Sao Cũng Được
Trả lời
13
Đánh dấu
13/06/2015 lúc 12:46
Cho : S = 30 + 32 + 34 + 36 + ... + 32002
a) Tính S
b) Chứng minh S chia hết cho 7
Được cập nhật 09/10/2017 lúc 18:34
Toán lớp 6
thien ty tfboys 13/06/2015 lúc 13:06
Báo cáo sai phạm
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Đúng 23 Sai 0
bui duc anh 04/04/2016 lúc 21:44
Báo cáo sai phạm
S= 3^0 +3^2 +3^4 +....+ 3^2002
9S= 3^4 +3^6+.......+3^2004
9S-S=3^2004-1
8S=3^2004-1
S=3^2004-1/8
Đúng 8 Sai 0
thien ty tfboys 13/06/2015 lúc 13:05
Báo cáo sai phạm
S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
Đúng 6 Sai 0
oOo Lê Việt Anh oOo 18/02/2017 lúc 21:26
Báo cáo sai phạm
a)
\(S=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2016}{2016}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}=\frac{1}{2016}\)
\(S=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2015}{2016}\)
\(S=\frac{1\cdot2\cdot3\cdot...\cdot2015}{2\cdot3\cdot4\cdot...\cdot2016}\)
\(S=\frac{1}{2016}\)
Ta có : S = 1 + 7 + 72 + ...... + 799 + 7100
=> 7S = 7 + 72 + ...... + 799 + 7101
=> 7S - S = 7101 - 1
=> 6S = 7101 - 1
=> S = \(\frac{7^{101}-1}{6}\)
Ta có S=1+7+72+...+7100
=> 7S=7+72+73+...+7101
=> 7S-S=6S=7101-1
=>S=(7101-1)/6