Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương trình
Xét hàm số f(t) = 2017t + t ; ta có f’(t) = 2017tln2017 + 1 > 0 mọi x
Suy ra hàm số đồng biến trên R.
Nhận thấy (*) có dạng f( sin2x) = f(cos2x) ; do đó: sin2x = cos2x
Vì
Đáp án B
Điều kiện: tan x > 0
Xét hàm số y = f t = t e 2 2 t t ∈ - 1 ; 1
Khi đó f ' t = e 2 2 1 - t 2 2 e 2 t > 0 ∀ t ∈ - 1 ; 1
do đó hàm số f(t) đồng biến trên [–1;1]
Chọn đáp án D.
khi đó yêu cầu bài toán trở thành phương trình
f t = 3 t + m
⇔ m = g t = f t - 3 t có nghiệm t ∈ ( 0 ; 1 ] . Có
Do đó
Vậy - 4 ≤ m < 1
Tổng các phần tử của tập S bằng -10.
Chọn đáp án C.
Phương trình trở thành: f t = m ( 1 )
Ta cần tìm m để (1) có nghiệm thuộc khoảng ( 0 ; 1 ]
⇔ - 4 ≤ m ≤ - 2
Chọn đáp án C.
Đặt t = sin x ∈ ( 0 ; 1 ] , ∀ x ∈ 0 ; π
Suy ra f sin x = f t ∈ [ - 1 ; 1 ) , ∀ t ∈ ( 0 ; 1 ]
Vậy phương trình có nghiệm x ∈ 0 ; π ⇔ - 1 < m ≤ 3