K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

Chọn A.

Phương trình 

Xét hàm số f(t) = 2017t + t ;  ta có f’(t) = 2017tln2017 + 1 > 0 mọi x

Suy ra hàm số đồng biến trên R.

Nhận thấy (*) có dạng  f( sin2x) = f(cos2x) ; do đó: sin2x = cos2x

Vì 

9 tháng 6 2018

Đáp án A

 

29 tháng 3 2019

Chọn D

19 tháng 11 2019

Đáp án: C.

Hướng dẫn: Diện tích được tính bởi tích phân

Giải sách bài tập Toán 12 | Giải sbt Toán 12

17 tháng 9 2018

Đáp án: C.

Hướng dẫn: Diện tích được tính bởi tích phân

Giải sách bài tập Toán 12 | Giải sbt Toán 12

16 tháng 11 2019

10 tháng 9 2019

Chọn D

3 tháng 1 2017

a) Đúng

b) Đúng

c) Sai

5 tháng 7 2017

Tính \(I=\int_0^{\dfrac{\pi}{2}}\dfrac{cos^{2017}x}{sin^{2017}x+cos^{2017}}dx\left(1\right)\)

Đặt \(t=cosx\Rightarrow sinx=\sqrt{1-cos^2x}\)

\(\Rightarrow dt=-sinx.dx\)

\(\Rightarrow I=\int_0^1\dfrac{t^{2017}.}{\sqrt{1-t^2}.\left(\left(\sqrt{1-t^2}\right)^{2017}+t^{2017}\right)}dt\)

Đặt: \(t=siny\Rightarrow\sqrt{1-t^2}=cosy\)

\(\Rightarrow dt=cosy.dy\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y.cosy}{cosy\left(cos^{2017}y+sin^{2017}y\right)}dy=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y}{\left(cos^{2017}y+sin^{2017}y\right)}\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x}{\left(cos^{2017}x+sin^{2017}x\right)}\left(2\right)\)

Cộng (1) và (2) ta được

\(2I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x+cos^{2017}x}{sin^{2017}x+cos^{2017}x}dx=\int_0^{\dfrac{\pi}{2}}1dx\)

\(=x|^{\dfrac{\pi}{2}}_0=\dfrac{\pi}{2}\)

\(\Rightarrow I=\dfrac{\pi}{4}\)

Thế lại bài toán ta được

\(\dfrac{\pi}{4}+t^2-6t+9-\dfrac{\pi}{4}=0\)

\(\Leftrightarrow t^2-6t+9=0\)

\(\Leftrightarrow t=3\)

Chọn đáp án C

mỗi trắc nghiệm thoy mà lm dài ntn s @@

chắc lên đó khó lắm ag

18 tháng 3 2017

Đáp án C.