Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
A =1+3+32+.....+32022+32023
3.A =3+32+33+.....+32023+32024
3.A -A=(3+32+33+.....+32023+32024 ) - (1+3+32+.....+32022+32023)
2A =32024-1
A =\(\dfrac{3^{2024}-1}{2}\)
\(A=3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2017}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(\Rightarrow2A=3^{2017}-3\)
Ta có : \(2A+3=3^n-1\Rightarrow3^{2017}-3+3=3^n-1\)
\(\Rightarrow3^{2017}=3^{n-1}\Rightarrow n-1=2017\Rightarrow n=2018\)
Vậy : n = 2018
\(B=1+3+3^2+...+3^{2016}\)
\(3\cdot B=3+3^2+3^3+...+3^{2017}\)
\(3B-B=3+3^2+3^3+...+3^{2017}-\left(1+3+3^2+...+3^{2016}\right)\)
\(2B=3^{2017}-1\)
\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)