K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

S=10/2.12+10/12.22+10/22.32+10/32.42+.......+10/2002.2012

S=1/2-1/12+1/12-1/22+1/22-1/32+1/32-1/42+.....+1/2002-1/2012

S=1/2-1/2012

S=????

bạn tự tính nhé

13 tháng 4 2016

S=10.1/10{1/2-1/12+1/12-1/22+1/22-1/32+...+1/2002-1/2012}
  =1/2-1/2012
  =1005/2012

4 tháng 4 2016

\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)

\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)

\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)

\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)

\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)

\(S=\frac{9}{12}\)

\(S=\frac{3}{4}\)

4 tháng 4 2016

S=\(\frac{3}{4}\)

3 tháng 4 2016

S=2(1-1/3+1/3-1/5+...+1/97-1/99)
  =2(1-1/99)
  =2(98/99)
  =196/99
 

 

2S=2/1*3+2/3*5+...+2/97*99

2S=1/1-1/3+1/3-1/5+...+1/97-1/99

2S=1-1/99

2S=98/99

S=49/99

17 tháng 4 2016

a) ta có:

\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)

hay \(-1,5\le x\le1,5\)

vì x\(\in Z\) nên ta chọn x=-1,0,1

17 tháng 4 2016

ta có:

3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)

2S=1-\(\frac{1}{3^9}\)

s=\(\left(1-\frac{1}{3^9}\right):2\)

7 tháng 4 2016

Ta có :

\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)

    \(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)

    \(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)

    \(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\) 

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)

    \(=2015.2.\left(1-\frac{1}{2017}\right)\)

    \(=2015.2.\frac{2016}{2017}\)

    =\(\frac{2015.2.2016}{2017}\)

    =\(\frac{8124480}{2017}\)

Vậy \(S=\frac{8124480}{2017}\)

 

    

7 tháng 4 2016

yeu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 tháng 4 2016

\(A=-\frac{1}{20}+-\frac{1}{30}+...+-\frac{1}{90}\)

   \(=-\frac{1}{4.5}+-\frac{1}{5.6}+...+-\frac{1}{9.10}\)

   \(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{5}\right)+\left(-\frac{1}{5}\right)-\left(-\frac{1}{6}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)

   \(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{10}\right)=-\frac{3}{20}\)

Vậy \(A=-\frac{3}{20}\)

 

25 tháng 3 2016

A= \(\frac{-1}{4\cdot5}+\frac{-1}{5\cdot6}+\frac{-1}{6\cdot7}+\frac{-1}{7\cdot8}+\frac{-1}{8\cdot9}+\frac{-1}{9\cdot10}\)

=\(-1\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)

=\(-1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)

=\(-1\left(\frac{1}{4}-\frac{1}{10}\right)\)

=\(-1\cdot\frac{3}{20}\)

=\(\frac{-3}{20}\)

=\(\frac{-1}{20}\)

25 tháng 3 2016

phân tích mẫu: 20=4.5 , 30= 5.6 , 42=6.7 tương tự rồi tách cả phân số là được

 

13 tháng 4 2016

Không chép lại đề nhé

Ta có:

P=\(\frac{50-49}{49}+\frac{50-48}{48}+...+\frac{50-2}{2}+\frac{50-1}{1}\)

P=\(\frac{50}{49}-\frac{49}{49}+\frac{50}{48}-\frac{48}{48}+...+\frac{50}{2}-\frac{2}{2}+\frac{50}{1}-\frac{1}{1}\)

P=\(\left(\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\right)+\frac{50}{1}-\left(\frac{49}{49}+\frac{48}{48}+...+\frac{2}{2}+\frac{1}{1}\right)\)

P=\(50\cdot\left(\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)+50-49\)                 (chỗ này gộp nha)

P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)+1\)

P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)+\frac{50}{50}\)

P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)\)

=>P=50S

=>\(\frac{S}{P}=\frac{S}{50S}=\frac{1}{50}\)

Vừa nãy mình nói nhầm, Sorry.

13 tháng 4 2016

Tích nha

 

6 tháng 4 2016

\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)

\(S=7(\frac{1}{3}-\frac{1}{63})\)

\(S=7(\frac{21}{63}-\frac{1}{63}) \)

\(S=7.\frac{20}{63}\)

\(S=\frac{20}{9}\)

Do đó:\(S<\frac{5}{2}\)

6 tháng 4 2016

S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.\(\frac{20}{63}\)\(\frac{5}{2}\)

=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)

=>S=\(\frac{40}{18}\)\(\frac{45}{18}\)

=>S<\(\frac{5}{2}\)