Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)
\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)
Do đó \(B<\frac{1}{4}\)
\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
M=1/2{1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99}
=1/2{1/3-1/99}
=1/2*32/99
=16/99
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
Đặt tên lần lượt là a ; b ; c ; d.
Ta có :
\(\frac{-1}{2}< \frac{a}{7}< \frac{b}{14}< \frac{c}{7}< \frac{d}{14}< \frac{-1}{7}\)
\(=>\frac{-7}{14}< \frac{2a}{14}< \frac{b}{14}< \frac{2c}{14}< \frac{d}{14}< \frac{-2}{14}\)
\(=>\frac{-7}{14}< \frac{-6}{14}< \frac{-5}{14}< \frac{-4}{14}< \frac{-3}{14}< \frac{-2}{14}\)
\(=>2a=-6;b=-5;2c=-4;d=-3\)
\(=>a=-3;b=-5;c=-2;d=-3\)
Vậy điền như sau : \(\frac{-1}{2}< \frac{-3}{7}< \frac{-5}{14}< \frac{-2}{7}< \frac{-3}{14}< \frac{-1}{7}\).
1/13 . 8/13 + 5/13 . 1/13 - 14/13
= 1/13 . (8/13 + 5/13) - 14/13
= 1/13 . 13/13 - 14/13
= 1/13 . 1 - 14/13
= 1/13 - 14/13
= -13/13
= -1
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{101.103}\)
\(=>A=\frac{3}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\right)\)
\(=>A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)
\(=>A=\frac{3}{2}.\left(1-\frac{1}{103}\right)=\frac{3}{2}.\frac{102}{103}=\frac{153}{103}>1\) (vì 153>103)
Vậy A>1
sorry,dòng thứ 2 sửa lại:\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{101.103}\right)\) nhé!
= 1135/23 - ( 167/32 - 330/23 )
= 1135/23 - (-6719/736)
= 43039/736
\(E=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+...+\left(1-\frac{1}{9999}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{9999}\right)\)
\(=50-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=50-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\frac{1}{2}.\left(1-\frac{1}{101}\right)=50-\frac{1}{2}.\frac{100}{101}=50-\frac{50}{101}=\frac{5000}{101}\)
Ta có :
\(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
\(=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)
Giá trị không đổi khi cả tử và mẫu cùng nhân với 2, ta được :
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{19}\right)=\frac{2}{3}.\frac{18}{19}=\frac{12}{19}\)
\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=\frac{1}{2}.\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}+\frac{1}{304}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{19}\right)=\frac{9}{19}\)
\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)
\(S=7(\frac{1}{3}-\frac{1}{63})\)
\(S=7(\frac{21}{63}-\frac{1}{63}) \)
\(S=7.\frac{20}{63}\)
\(S=\frac{20}{9}\)
Do đó:\(S<\frac{5}{2}\)
S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.\(\frac{20}{63}\)và\(\frac{5}{2}\)
=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)
=>S=\(\frac{40}{18}\)và\(\frac{45}{18}\)
=>S<\(\frac{5}{2}\)