K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!

Đặt tên lần lượt là a ; b ; c ; d.

Ta có : 

\(\frac{-1}{2}< \frac{a}{7}< \frac{b}{14}< \frac{c}{7}< \frac{d}{14}< \frac{-1}{7}\)

\(=>\frac{-7}{14}< \frac{2a}{14}< \frac{b}{14}< \frac{2c}{14}< \frac{d}{14}< \frac{-2}{14}\)

\(=>\frac{-7}{14}< \frac{-6}{14}< \frac{-5}{14}< \frac{-4}{14}< \frac{-3}{14}< \frac{-2}{14}\)

\(=>2a=-6;b=-5;2c=-4;d=-3\)

\(=>a=-3;b=-5;c=-2;d=-3\)

Vậy điền như sau : \(\frac{-1}{2}< \frac{-3}{7}< \frac{-5}{14}< \frac{-2}{7}< \frac{-3}{14}< \frac{-1}{7}\).

 

28 tháng 4 2016

cam on banhihi

22 tháng 2 2016

lồnucche

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

 

5 tháng 7 2019

A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)

\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)

\(=\frac{3}{5}+\frac{1}{-7}=\frac{3}{5}-\frac{1}{7}\)

\(=\frac{21}{35}-\frac{5}{35}=\frac{16}{35}\)

6 tháng 4 2016

\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)

\(S=7(\frac{1}{3}-\frac{1}{63})\)

\(S=7(\frac{21}{63}-\frac{1}{63}) \)

\(S=7.\frac{20}{63}\)

\(S=\frac{20}{9}\)

Do đó:\(S<\frac{5}{2}\)

6 tháng 4 2016

S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.\(\frac{20}{63}\)\(\frac{5}{2}\)

=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)

=>S=\(\frac{40}{18}\)\(\frac{45}{18}\)

=>S<\(\frac{5}{2}\)

18 tháng 2 2016

a) Ta có:  \(\frac{-9}{80}=\frac{\left(-9\right)x4}{80x4}=\frac{-36}{320}\) và \(\frac{17}{320}\)

b) Ta có:  \(\frac{-7}{10}=\frac{\left(-7\right)x33}{10x33}=\frac{-231}{330}\) và \(\frac{1}{33}=\frac{1x10}{33x10}=\frac{10}{330}\)

c) Ta có:

\(\frac{-5}{14}=\frac{\left(-5\right)x10}{14x10}=\frac{-50}{140}\)

\(\frac{3}{20}=\frac{3x7}{20x7}=\frac{21}{140}\)

\(\frac{9}{70}=\frac{9x2}{70x2}=\frac{18}{140}\)

d) Ta có: 

\(\frac{10}{42}=\frac{10x22}{42x22}=\frac{220}{924}\)

\(\frac{-3}{28}=\frac{\left(-3\right)x33}{28x33}=\frac{-99}{924}\)

\(\frac{-55}{132}=\frac{\left(-55\right)x7}{132x7}=\frac{-385}{924}\)

 

 

24 tháng 4 2016

bằng 1 hay sao đó bạn ! Mình cũng ko chắc nữa !

24 tháng 4 2016

\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+\frac{12}{7}=\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{12}{7}=\frac{-5}{7}.1+\frac{12}{7}=\frac{-5}{7}+\frac{12}{7}=-1\)

4 tháng 4 2016

Gọi số cần tìm là x, ta có:

\(\frac{2}{7}x=14\)

x = 14:\(\frac{2}{7}\)

x = \(14X\frac{7}{2}\)

x = 49

4 tháng 4 2016

Gọi số cần tìm là : b

Ta có : \(\frac{2}{7}\cdot x=14\)

=>\(x=14:\frac{2}{7}=14\cdot\frac{7}{2}\)

=>\(x=49\)

a: \(B=\left(-\dfrac{1}{5}-\dfrac{5}{7}+\dfrac{-3}{35}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{2}\right)+\dfrac{1}{41}\)

\(=\dfrac{-7-25-3}{35}+\dfrac{3+2+1}{6}+\dfrac{1}{41}=\dfrac{42}{41}-1=\dfrac{1}{41}\)

 

7 tháng 3 2016

Ta có :

\(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)

\(=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)

Giá trị không đổi khi cả tử và mẫu cùng nhân với 2, ta được :

\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)

\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)

\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)

\(=\frac{2}{3}.\left(1-\frac{1}{19}\right)=\frac{2}{3}.\frac{18}{19}=\frac{12}{19}\)

7 tháng 3 2016

\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=\frac{1}{2}.\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}+\frac{1}{304}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{19}\right)=\frac{9}{19}\)