K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)

\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)

\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)

\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)

\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)

\(S=\frac{9}{12}\)

\(S=\frac{3}{4}\)

4 tháng 4 2016

S=\(\frac{3}{4}\)

12 tháng 3 2016

bạn ơi, mình biết làm bài này nhưng cho mình biết làm sao để viết phân  số vậy

10 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}+\left(\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{2}+2.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3}{10}\)

\(\Leftrightarrow2.\left(\frac{1}{7}-\frac{1}{x+1}\right)=\frac{3}{10}-\frac{1}{2}=-\frac{1}{5}\)

\(\Leftrightarrow\frac{1}{7}-\frac{1}{x+1}=-\frac{1}{5}:2=-\frac{1}{10}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{7}-\left(-\frac{1}{10}\right)=\frac{17}{70}\)

\(\Rightarrow17x+17=70\)

=> không tồn tại n vì n là số tự nhiên

gọi A=1/21+1/22+1/23+...+1/40

chia A thành 2 nhóm A1 và A2( A1+A2=A)

ta có A1=1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A1>10/30=1/3(1)

ta có A2=1/31+1/32+1/33+...+1/40>1/40+1/40+1/40+...+1/40(có 10 phân số 1/40)

A2>10/40=1/4(2)

từ (1)và (2) suy ra

A1+A2>1/3+1/4

A>7/12(3)

ta có A1=1/21+1/22+1/23+...+1/20<1/20+1/20+1/20+...+1/20(có 10 phân số 1/20)

A1<10/20=1/2(4)

ta có A2=1/31+1/32+1/33+...+1/40<1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A2<10/30=1/3(5)

từ (4)và (5) suy ra

A1+A2<1/2+1/3

A<5/6(6)

từ (3),(6) suy ra 7/12<1/21+1/22+1/23+...+1/40<5/6

cái A1+1/21+1/22+1/23+1/24+1/25+...+1/30<1/20+1/20+1/20+1/20+...+1/20 nhé

29 tháng 3 2016

Ta có:

\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)

\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)

\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)

Bạn xem lại đề

29 tháng 3 2016

Đề đúng rồi. co giao minh cung vua giang roi

22 tháng 4 2016

giải luôn; đặt A=1/2^2+1/3^2+...+1/8^2

1/2^2 < 1/1.2

1/3^2<1/2.3

.......

1/8^2<1/7.8

=> 1/2^2 + 1/3^2 +...+1/8^2<1/1.2  + 1/2.3 + ....+ 1/7.8

=>A<1-1/2 + 1/2 - 1/3 + ....+1/7-1/8

=>A<1-1/8<1 

vậy 1/2^2+1/3^2+....+1/8^2 <1 

like nha eoeo

22 tháng 2 2016

lồnucche

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

 

19 tháng 4 2016

Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)

Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)

Vậy B < 1

26 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}\\\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8} \\ =\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=1-\frac{1}{8}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1\)

Chúc bạn học tốt!hihi

26 tháng 4 2016

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\)

                                          = \(1-\frac{1}{8}< 1\)

Vậy B < 1