Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
a) \(\frac{25}{9}-\frac{12}{13}x=\frac{7}{9}\)
=> \(\frac{12}{13}x=\frac{25}{9}-\frac{7}{9}=\frac{18}{9}=2\)
=> \(x=2:\frac{12}{13}=2\cdot\frac{13}{12}=\frac{13}{6}\)
b) \(x:\frac{13}{3}=-2,5\)
=> \(x:\frac{13}{3}=-\frac{5}{2}\)
=> \(x=\left(-\frac{5}{2}\right)\cdot\frac{13}{3}=-\frac{65}{6}\)
c) \(\frac{x}{3}-\frac{1}{4}=-\frac{5}{6}\)
=> \(\frac{4x-3}{12}=-\frac{10}{12}\)
=> 4x - 3 = -10
=> 4x = -10 + 3 = -7
=> x = -7/4
Bài 2 :
\(A=a\cdot\frac{1}{3}+a\cdot\frac{1}{4}-a\cdot\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\cdot\frac{5}{12}\)
Thay a = -3/5 vào biểu thức ta có : \(A=\left(-\frac{3}{5}\right)\cdot\frac{5}{12}=\frac{-3}{12}=\frac{-1}{4}\)
\(B=b\cdot\frac{5}{6}+b\cdot\frac{3}{4}-b\cdot\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\cdot\frac{13}{12}\)
Thay b = 12/13 vào ta được kết quả là 1
a ) \(\frac{25}{9}-\frac{12}{13}\cdot x=\frac{7}{9}\)
\(\Rightarrow\frac{12}{13}\cdot x=\frac{25}{9}-\frac{7}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\div\frac{12}{13}=2\cdot\frac{13}{12}=\frac{13}{6}\)
Vậy ...
b ) \(x\div\frac{13}{3}=-\frac{5}{2}\)
\(\Rightarrow x\div\frac{13}{3}=-\frac{5}{2}\)
\(\Rightarrow x=\left(-\frac{5}{2}\right)\cdot\frac{13}{3}=-\frac{65}{6}\)
Vậy ..
c ) \(\frac{x}{3}-\frac{1}{4}=-\frac{5}{6}\)
\(\Rightarrow\frac{4x-3}{12}=-\frac{10}{12}\)
\(\Rightarrow4x-3=-10\)
\(\Rightarrow4x=-10+3=-7\)
\(\Rightarrow x=-\frac{7}{4}\)
Vậy ....
\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)
Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)
\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)
\(=\left|4-2x\right|+y^2-5\)
Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)
\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )
B=1+32+33+...+3100
3B=3(1+32+33+...+3100)
3B=3+33+...+3101
3B-B=(3+33+...+3101)-(1+32+33+...+3100)
2B=3101-1
\(B=\frac{3^{101}-1}{2}\)
ảm ơn bn nhiều