Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M*a^2=a^2+a^4+...+a^(2n+2)
=>\(M\left(a^2-1\right)=a^{2n+2}-1\)
=>\(M=\dfrac{a^{2n+2}-1}{a^2-1}\)
a: Số số hạng của A là:
(2n+1-1):2+1=n+1(số)
Số số hạng của B là;
(2n-2):2+1=n(số)
b: A=(2n+1+1)(n+1)/2=(n+1)^2 là số chính phương
c: C=(2n+2)*n/2=n(n+1) chỉ có thể là số chính phương khi n=0 thôi
Ta có : 2n - 5 ⋮ n + 1
<=> 2n + 2 - 7 ⋮ n + 1
<=> 2(n + 1) - 7 ⋮ n + 1
Vì 2(n + 1) ⋮ n + 1 √ n ∈ Z , Để 2(n + 1) - 7 ⋮ n + 1 <=> 7 ⋮ n + 1
=> n + 1 ∈ Ư(7) = { ± 1; ± 7 }
Ta có : n + 1 = - 7 => n = - 7 - 1 = - 8 (loại)
n + 1 = - 1 => n = - 1 - 1 = - 2 (loại)
n + 1 = 1 => n = 1 - 1 = 0 (TM)
n + 1 = 7 => n = 7 - 1 = 6 (TM)
Vậy với n ∈ { 0; 6 } thì 2n - 5 ⋮ n + 1
B=1+32+33+...+3100
3B=3(1+32+33+...+3100)
3B=3+33+...+3101
3B-B=(3+33+...+3101)-(1+32+33+...+3100)
2B=3101-1
\(B=\frac{3^{101}-1}{2}\)