Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/100‐1/100.99‐1/99.98‐...‐1/3.2‐1/2.1
\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=-\frac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-1+\frac{1}{100}\)
\(C=\frac{-49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - (1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
\(C=\frac{1}{100} -\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)
\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+..+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt biểu thức trong ngoặc đơn là B ta có
\(B=\frac{100-99}{100.99}+\frac{99-98}{99.98}+\frac{98-97}{98.97}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)
\(B=\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+\frac{1}{2}-\frac{1}{3}+1-\frac{1}{2}\)
\(B=1-\frac{1}{100}=\frac{99}{100}\)
\(C=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}\)
C = \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-.....-\frac{1}{2.1}\)
C = \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)
C = \(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
C = \(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}\)
C = \(\frac{-49}{50}\)
=> C = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}+\frac{1}{100}\)
=> C = \(-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)+\frac{1}{100}\)
=> C = \(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)
=> C = \(-\left(1-\frac{1}{100}\right)+\frac{1}{100}\)
=> C =\(-1+\frac{1}{100}+\frac{1}{100}\)
=> C = \(-1+\left(\frac{1}{100}+\frac{1}{100}\right)\)
=> C = \(-1+\frac{1}{50}\)
=> C = \(-\frac{49}{50}\)
KL : C = \(-\frac{49}{50}\)
Ta có: \(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)
\(\Rightarrow C=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(\Rightarrow C=\frac{1}{100}+\frac{1}{100}-1\)
\(\Rightarrow C=\frac{2}{100}-\frac{100}{100}\)
\(\Rightarrow C=-\frac{88}{100}=-\frac{22}{25}\)
Vậy \(C=-\frac{22}{25}\)
Chuk bạn hok tốt!
bạn oi
2/100 -100/100=98/100 chứ
sao bằng 88 được bạn ơi