K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

\(1\frac{1}{5}\cdot1\frac{1}{6}\cdot1\frac{1}{7}\cdot...\cdot1\frac{1}{1998}\cdot1\frac{1}{1999}\)

\(=\frac{6}{5}\cdot\frac{7}{6}\cdot\frac{8}{7}\cdot...\cdot\frac{1999}{1998}\cdot\frac{2000}{1999}\)

\(=\frac{6\cdot7\cdot8\cdot...\cdot1999\cdot2000}{5\cdot6\cdot7\cdot...\cdot1998\cdot1999}\)

\(=\frac{2000}{5}=400\)

20 tháng 8 2020

\(1\frac{1}{5}‧1\frac{1}{6}‧1\frac{1}{7}‧.......‧1\frac{1}{1998}‧1\frac{1}{1999}\)

\(=\frac{6}{5}‧\frac{7}{6}\frac{8}{7}‧.......‧\frac{1999}{1998}‧\frac{2000}{1999}\)

\(=\frac{6‧7‧8‧.......‧1999‧2000}{5‧6‧7‧.......‧1998‧1999}\)

\(=400\)

14 tháng 7 2016

b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)

Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)

14 tháng 7 2016

a./

\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)

Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)

(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

13 tháng 7 2015

lop 5 da hoc bai nay dau ban

11 tháng 2 2020

Câu 1: \(\Leftrightarrow(\frac{x-1}{6}-1)+(\frac{x-2}{5}-1)+(\frac{x-3}{4}-1)+(\frac{x-4}{3}-1)+(\frac{x-5}{2}-1=0)\)

             \(\Leftrightarrow(x-7)(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2})=0\)

             \(\Leftrightarrow x-7=0\Leftrightarrow x=7\)

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

Bỏ 1/3 ở cuối nhé

28 tháng 4 2019

Ta có:(1+1999/2)+(1+1998/3)+...(2/1999)(có 1998 tổng<=>1998 số 1)+(2000 - 1998)+400

        = 2001/2+2001/3+...+2001/1999+402

        =2001.(1/2+1/3+...+1/1999)+402(1)

      Thay (1) vào biểu thức trên và tính(tự tính nha!,tk cho mk!!!)

18 tháng 7 2016

cái này dễ mà

 

25 tháng 7 2018

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\frac{14}{15}\)

\(=\frac{7}{15}\)

25 tháng 7 2018

Sửa đề chút nhé:

\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).0\)

\(=0\)

Ý b tham khảo bài bạn nguyen thi thuy linh nhé

16 tháng 8 2016

\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=1-\frac{1}{6}=\frac{5}{6}\)

16 tháng 8 2016

\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{3}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{1}-\frac{1}{6}\)

\(=\frac{5}{6}\)

5 tháng 8 2018

x= -2002 nhan. Dùng máy tính cầm tay sẽ ra

5 tháng 8 2018

\(\frac{x+1}{2001}+\frac{x+2}{200}=\frac{x+3}{1999}+\frac{x+4}{1998}\)

\(\left(\frac{x+1}{2001}+1\right)+\left(\frac{x+2}{2000}+1\right)=\left(\frac{x+3}{1999}+1\right)+\left(\frac{x+4}{1998}+1\right)\)

\(\frac{x+2002}{2001}+\frac{x+2002}{2000}=\frac{x+2002}{1999}+\frac{x+2002}{1998}\)

\(\frac{x+2002}{2001}+\frac{x+2002}{2000}-\frac{x+2002}{1999}-\frac{x+2002}{1998}=0\)

\(\left(x+2002\right).\left(\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Rightarrow x+2002=0\)

\(\Rightarrow x=0-2002\)

\(\Rightarrow x=-2002\)