Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1991.1992.1993.1994.995}{1990.1991.1992.1993.997}=\frac{1994.995}{1990.997}=\frac{2.1}{2.1}=\frac{2}{2}=1\)
Ta có:
\(A=1993\times1993\)
\(A=1993^2\)
Áp dụng HĐT \(a^2-b^2=\left(a-b\right)\left(a+b\right)\), ta có:
\(B=1992\times1994\)
\(B=\left(1993-1\right)\left(1993+1\right)\)
\(B=1993^2-1^2\)
\(B=1993^2-1\)
Mà 19932 > 19932 - 1
\(\Rightarrow A>B\)
\(\frac{1994\times1993-2}{1992+1992\times1994}=\frac{1994\times1992+1994-1}{1992+1992\times1994}=\frac{1994\times1992+1992}{1992+1992\times1994}=1\)
A = \(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) +\(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\) + \(\dfrac{4}{9\times11\times13}\)
A = \(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+...+\(\dfrac{1}{9\times11}\)-\(\dfrac{1}{11\times13}\)
A = \(\dfrac{1}{1\times3}\) - \(\dfrac{1}{11\times13}\)
A = \(\dfrac{1}{3}-\dfrac{1}{143}\)
A = \(\dfrac{140}{429}\)
Bài 2:
A = \(\dfrac{1991}{1990}\) x \(\dfrac{1992}{1991}\) x \(\dfrac{1993}{1992}\) x \(\dfrac{1994}{1993}\) x \(\dfrac{1995}{997}\)
A = \(\dfrac{1994\times1995}{1990\times997}\)
A = \(\dfrac{997\times2\times5\times399}{5\times2\times199\times997}\)
A = \(\dfrac{399}{199}\)
TL
=> 17937
~HT~
MÌNH CẦN CÂU TRẢ LỜI ĐẦY ĐỦ NHA BẠN