Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2018^3 -1 = (2018-1)(2018^2 + 2018+1)
2018^2 + 2019 = 2018^2 + 2018+1
Vậy 2018^3 -1 / 2018^2 +2019 = 2018 -1= 2017
Chúc bạn học tốt.
\(B=\left(2x-1\right)^2+2.\left(2x-1\right)\left(2x-3\right)+\left(2x-3\right)^2+2019\)
\(=\left(2x-1+2x-3\right)^2+2019\)
\(=\left(4x-4\right)^2+2019\)
\(=\left(4.2018-4\right)^2+2019\)
\(=\left(8072-4\right)^2+2019\)
\(=8068^2+2019=65092624+2019=65094643\)
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
a,
\(2018^2-2017\cdot2019\\ =2018^2-\left(2018-1\right)\left(2018+1\right)\\ =2018^2-2018^2+1\\ =1\)
b, Đề khó nhìn bạn ạ, gõ Latex đi bạn! :)
B=\(x^{2019}-2019.x^{2018}+2019.x^{2017}-...+2019x-1\)
Ta có : 2019 = 1+2018=1+x ( vì x = 2018 )
Suy ra : \(x^{2019}-\left(x+1\right).x^{2018}+\left(x+1\right).x^{2017}-....+\left(x+1\right).x-1\)
=\(x^{2019}-\left(x^{2019}+x^{2018}\right)+\left(x^{2018}+x^{2017}\right)-...+\left(x^2+x\right)-1\)
= \(x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-....+x^2+x-1\)
= \(x-1\) mà x =2018
=> \(x-1=2018-1=2017\)
Vậy giá trị của biểu thức B = 2017