Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(1-\frac{1}{99}\right)\text{ x }\left(1-\frac{1}{100}\right)\text{ x }.....\text{ x }\left(1-\frac{1}{2006}\right)\)
\(=\frac{98}{99}\text{ x }\frac{99}{100}\text{ x }\frac{100}{101}\text{ x }......\text{ x }\frac{2005}{2006}\)
\(=\frac{98\text{ x }99\text{ x }100\text{ x }......\text{ x }2005}{99\text{ x }100\text{ x }101\text{ x }......\text{ x }2006}\)
\(=\frac{98}{2006}=\frac{49}{1003}\)
(1-1/99).(1-1/100)....(1-1/2006) =(99/99-1/99).(100/100-1/100)....(2006/2006-1/2006) = (98/99).(99/100)...(2005/2006) =98/2006=..
1-1/99).(1-1/100)....(1-1/2006)
=(99/99-1/99).(100/100-1/100)....(2006/2006-1/2006) = (98/99).(99/100)...(2005/2006) =98/2006=..
trong tích đã cho từ 1-1/99 đến 1-2006 sẽ có 1 thừa số bằng 1-1=0
=>tích đã cho bằng 0
\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)
\(=\frac{98.99.....2005}{99.100....2006}\)
\(=\frac{98}{2006}=\frac{49}{2006}\)
ủng hộ nha ai k mik k lại
Bài 1
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2
\(\dfrac{111}{333}=\dfrac{111:111}{333:111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222:2222}{4444:2222}=\dfrac{1}{2}\)
Do \(3>2\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}\)
Vậy \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
Bài 1.
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98\times99\times...\times2005}{99\times100\times...2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2.
Có: \(\dfrac{111}{333}=\dfrac{111}{3\times111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222}{2\times2222}=\dfrac{1}{2}\)
Vì \(\dfrac{1}{3}< \dfrac{1}{2}\) nên \(\dfrac{111}{333}< \dfrac{2222}{4444}\)