Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)
Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1\)
\(\Rightarrow2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1\)
Do đó : \(M=2^{2010}-A=2^{2010}-\left[2^{2010}-1\right]=1\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^{2009}+2^{2008}+...+2+1\)
\(2\left(2^{2010}-M\right)=2\left(2^{2009}+2^{2008}+...+2+1\right)\)
\(2\left(2^{2010}-M\right)=2^{2010}+2^{2009}+...+2^2+2\)
\(2\left(2^{2010}-M\right)-M=\left(2^{2010}+2^{2009}+...+4+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)
\(2^{2010}-M=2^{2010}+2^{2009}+...+4+2-2^{2009}-2^{2008}-...-2-1\)
\(2^{2010}-M=2^{2010}-1\)
=> M = 1
\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)
\(-M=-\left(2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\right)\)
\(-M=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)
\(-2M=2.\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(-2M=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)
\(-M=2^{2011}+2^{2010}+...+2^2+2^1-\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(-M=2^{2011}-1=>M=-2^{2011}+1\)
Đặt \(A=2^{2009}+2^{2008}+...+2+2^0\)
\(=1+2+...+2^{2008}+2^{2009}\)
\(\Rightarrow2A=2+2^2+...+2^{2010}\)
\(\Rightarrow2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)
\(\Rightarrow A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-\left(2^{2010}-1\right)\)
\(=2^{2010}-2^{2010}+1=1\)
Vậy M = 1
Đặt \(A=2^{2009}+2^{2008}+2^{2007}+...+2+1\\ \Rightarrow2A=2^{2010}+2^{2009}+2^{2008}+...+2^2+2\\ \Rightarrow2A-A=\left(2^{2010}+2^{2009}+2^{2008}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+2^{2007}+...+2+1\right)\\ \Rightarrow A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-2^{2010}+1=1\)
Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)
Ta có: \(2A=2^{2010}+2^{2008}+...+2^1\)
=> \(2AtrừA=\left(2^{2010}+2^{2008}+...+2^1\right)trừ\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
=> \(A=2^{2010}trừ1\)
Thay vào ta có:
\(M=2^{2010}trừ2^{2010}trừ1\)
\(\Rightarrow M=âm1\)
Xin lỗi. Máy mình không có dấu trừ. Nên viết thành chữ.
1.
M = 22010 - ( 22009 + 22008 + ... + 21 + 20 )
đặt N = 22009 + 22008 + ... + 21 + 20
2N = 22010 + 22009 + ... + 22 + 21
2N - N = ( 22010 + 22009 + ... + 22 + 21 ) - ( 22009 + 22008 + ... + 21 + 20 )
N = 22010 - 20
Thay N vào ta được :
M = 22010 - ( 22010 - 20 )
M = 22010 - 22010 + 20
M = 20 = 1
2.
Ta có :
2332 < 2333 = ( 23 ) 111 = 8111
3223 > 3222 = ( 32 ) 111 = 9111
Vì 2332 < 8111 < 9111 < 3223
Đặt N = 22009 + 22008 + 22007 +......+ 21 + 20
2N = 22010 + 22009 + 22008 +.....+ 22 + 21
2N - N = 22010 - 20
=> N = 22010 - 1
=> M = 22010 - (22010 - 1)
=> M = 22010 - 22010 + 1
=> M = 1
a/ 2H=2^2011-2^2010-2^2009-...-2
=> 2H-H=2^2011-2^2010-2^2009-...-2-(2^2010-2^2009-2^2008-...-1)
H=2^2011-2^2010-2^2009-...-2-2^2010+2^2009+2^2008+...+1
H=2^2011-2^2010-2^2010-1
H=2^2011-2.2^2010-1
H=2^2011-2^2011-1
H=-1 => 2010^-1=1/2010
b/ M=1 + 1/2(1+2) + 1/3(1+2+3) + 1/4(1+2+3+4) + ... + 1/16(1+2+3+...+16)
M= 1+1/2.(2.3/2) + 1/3.(3.4/2) + 1/4.(4.5/2) + ... + 1/16.(16.17/2)
M= 1 + 3/2 +4/2 + 5/2 + ... + 17/2
Cùng mẫu số rồi Tự tính nhé
có 1 công thức làm bài này nè em : 1+2=3=2.3/2, 1+2+3=6=3.4/2, 1+2+3+4=10=4.5/2 ....
Đặt N=22009+22008+...+1
=>2N=22010+22009+...+2
=>2N-N=(22010+22009+...+2)-(22009+22008+...+1)
=>N=22010-1
Mà M=22010-N=22010-(22010-1)=1
Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0.\)
Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1.\)
Suy ra : \(2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1.\)
Do đó \(M=2^{2010}-A=2^{2010}-\left(2^{2010}-1\right)=1.\)
Đặt A=22009+22008+...+21+20.A=22009+22008+...+21+20.
Ta có : 2A=22010+22009+...+22+21.2A=22010+22009+...+22+21.
Suy ra : 2A−A=22010−20⇒A=22010−1.2A−A=22010−20⇒A=22010−1.
Do đó M=22010−A=22010−(22010−1)=1.