Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn thik câu 2 đúng k . Oke !
b = 3^2009 . 7^2010 . 13^2011
= 3^2008.3 . 7^2010 .13^2011.13
= (3.13).(3^4)^502 . (7.13)^2010
= 39 . 81^502 . 91 ^2010
Vì số 81^502 . 91^2010 có số tận cùng là 1
=> b có tận cùng là 9
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
1.
Ta có 3223 > 3222 = (32)111 = 9111. (1)
2332 < 2333 = (23)111 = 8111. (2)
Từ (1) và (2) suy ra: 2332 < 8111 < 9111 < 3223.
Vậy 2332 < 3223
2.
Cách 1: 92000 = (32)2000 = 34000
Cách 2: 34000 = (34)1000 = 811000. (1)
92000 = (92)1000 = 811000. (2)
Từ (1) và (2) suy ra 34000 = 92000 .
3.
Đặt A = 22009 + 22008 + ... + 21 + 20
Ta có 2A = 22010 + 22009 + ... + 22 + 21.
Suy ra 2A - A = 22010 - 20 = 22010 - 1.
Do đó M = 22010 - A = 22010 - (22010 - 1) = 1.
trả lời;
1)2332 và 3223
2332 <2333 mà 2333=(23)111=8111
3223 >3222 mà 3222=(32)111=9111
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)
Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1\)
\(\Rightarrow2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1\)
Do đó : \(M=2^{2010}-A=2^{2010}-\left[2^{2010}-1\right]=1\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^{2009}+2^{2008}+...+2+1\)
\(2\left(2^{2010}-M\right)=2\left(2^{2009}+2^{2008}+...+2+1\right)\)
\(2\left(2^{2010}-M\right)=2^{2010}+2^{2009}+...+2^2+2\)
\(2\left(2^{2010}-M\right)-M=\left(2^{2010}+2^{2009}+...+4+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)
\(2^{2010}-M=2^{2010}+2^{2009}+...+4+2-2^{2009}-2^{2008}-...-2-1\)
\(2^{2010}-M=2^{2010}-1\)
=> M = 1
1 , (3/7)^21 :(9/49)^6
= (3/7)^21 : [(3/7)^2]^6
= (3/7)^21 : (3/7)12
= (3/7)^9
2, a) 291 và 535
ta có: 291 < 290 = (25)18 = 3218
lại có: 3218 > 2518 = (52)18 = 536 > 535
vậy 291 > 535
b) 34000 và 92000
ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
vậy 34000 = 92000
c) 2332 và 3223
ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
mà 8111 < 9111
vậy 2332 < 3223
3. n150 = (n2 )75 < 5225 = (53)75 => n2 < 53 = 125 => n2 lớn nhất = 121 => n =11.
4. M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
\(Bai1:\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\frac{3^{21}}{7^{21}}:\frac{\left(3^2\right)^6}{\left(7^2\right)^6}=\frac{3^{21}}{7^{21}}:\frac{3^{12}}{7^{12}}=\frac{3^{21}}{7^{21}}.\frac{7^{12}}{3^{12}}=\frac{3^9}{7^9}\)
Bài 2: a) 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
=> 291 > 535
b) 34000 = (32)2000 = 92000
=> 34000 = 92000
c) 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 8111 < 9111
=> 2332 < 3223
Bài 3: n150 < 5225
=> (n2)75 < (53)75
=> n2 < 53
=> n2 < 125
Mà n lớn nhất => n2 lớn nhất => n2 = 121
=> n = 11
Bài 4: Đặt A = 22009 + 22008 + ... + 21 + 20
A = 20 + 21 + ... + 22008 + 22009
2A = 21 + 22 + ... + 22009 + 22010
2A - A = (21 + 22 + ... + 22009 + 22010) - (20 + 21 + ... + 22008 + 22009)
A = 22010 - 20
A = 22010 - 1
=> M = 22010 - (22010 - 1)
M = 22010 - 22010 + 1
M = 1
\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)
\(-M=-\left(2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\right)\)
\(-M=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)
\(-2M=2.\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(-2M=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)
\(-M=2^{2011}+2^{2010}+...+2^2+2^1-\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(-M=2^{2011}-1=>M=-2^{2011}+1\)
1.
M = 22010 - ( 22009 + 22008 + ... + 21 + 20 )
đặt N = 22009 + 22008 + ... + 21 + 20
2N = 22010 + 22009 + ... + 22 + 21
2N - N = ( 22010 + 22009 + ... + 22 + 21 ) - ( 22009 + 22008 + ... + 21 + 20 )
N = 22010 - 20
Thay N vào ta được :
M = 22010 - ( 22010 - 20 )
M = 22010 - 22010 + 20
M = 20 = 1
2.
Ta có :
2332 < 2333 = ( 23 ) 111 = 8111
3223 > 3222 = ( 32 ) 111 = 9111
Vì 2332 < 8111 < 9111 < 3223