K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Đặt \(A=2^{2009}+2^{2008}+...+2+2^0\)

\(=1+2+...+2^{2008}+2^{2009}\)

\(\Rightarrow2A=2+2^2+...+2^{2010}\)

\(\Rightarrow2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)

\(\Rightarrow A=2^{2010}-1\)

\(\Rightarrow M=2^{2010}-\left(2^{2010}-1\right)\)

\(=2^{2010}-2^{2010}+1=1\)

Vậy M = 1

8 tháng 8 2019

Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)

Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1\)

Do đó : \(M=2^{2010}-A=2^{2010}-\left[2^{2010}-1\right]=1\)

8 tháng 8 2019

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(2^{2010}-M=2^{2009}+2^{2008}+...+2+1\)

\(2\left(2^{2010}-M\right)=2\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(2\left(2^{2010}-M\right)=2^{2010}+2^{2009}+...+2^2+2\)

\(2\left(2^{2010}-M\right)-M=\left(2^{2010}+2^{2009}+...+4+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(2^{2010}-M=2^{2010}+2^{2009}+...+4+2-2^{2009}-2^{2008}-...-2-1\)

\(2^{2010}-M=2^{2010}-1\)

=> M = 1

20 tháng 8 2017

Đặt \(A=2^{2009}+2^{2008}+2^{2007}+...+2+1\\ \Rightarrow2A=2^{2010}+2^{2009}+2^{2008}+...+2^2+2\\ \Rightarrow2A-A=\left(2^{2010}+2^{2009}+2^{2008}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+2^{2007}+...+2+1\right)\\ \Rightarrow A=2^{2010}-1\)

\(\Rightarrow M=2^{2010}-2^{2010}+1=1\)

30 tháng 8 2017

"A" ở đây nghĩa là gì bạn???

20 tháng 10 2018

\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)

\(-M=-\left(2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\right)\)

\(-M=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)

\(-2M=2.\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(-2M=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)

\(-M=2^{2011}+2^{2010}+...+2^2+2^1-\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(-M=2^{2011}-1=>M=-2^{2011}+1\)

20 tháng 10 2018

tại sao lại có dấu ''-'' vậy bạn mình không hiểu lắm.

10 tháng 6 2017

Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0.\)

Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1.\)

Suy ra : \(2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1.\)

Do đó \(M=2^{2010}-A=2^{2010}-\left(2^{2010}-1\right)=1.\)

Đặt A=22009+22008+...+21+20.A=22009+22008+...+21+20.

Ta có : 2A=22010+22009+...+22+21.2A=22010+22009+...+22+21.

Suy ra : 2A−A=22010−20⇒A=22010−1.2A−A=22010−20⇒A=22010−1.

Do đó M=22010−A=22010−(22010−1)=1.

Bạn dựa theo bài của Việt mà làm

9 tháng 8 2015

Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)

Ta có: \(2A=2^{2010}+2^{2008}+...+2^1\)

=> \(2AtrừA=\left(2^{2010}+2^{2008}+...+2^1\right)trừ\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

=> \(A=2^{2010}trừ1\)

Thay vào ta có:

\(M=2^{2010}trừ2^{2010}trừ1\)

\(\Rightarrow M=âm1\)

Xin lỗi. Máy mình không có dấu trừ. Nên viết thành chữ.

3 tháng 7 2017

1.

M = 22010 - ( 22009 + 22008 + ... + 21 + 20 )

đặt N = 22009 + 22008 + ... + 21 + 20

2N = 22010 + 22009 + ... + 22 + 21

2N - N = ( 22010 + 22009 + ... + 22 + 21 ) - ( 22009 + 22008 + ... + 21 + 20 )

N = 22010 - 20

Thay N vào ta được : 

M = 22010 - ( 22010 - 20 )

M = 22010 - 22010 + 20

M = 20 = 1

2.

Ta có :

2332 < 2333 = ( 23 ) 111 = 8111

3223 > 3222 = ( 32 ) 111 = 9111

Vì 2332 < 8111 < 9111 < 3223

17 tháng 9 2016

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(2^{2010}-M=1+2+2^2+...+2^{2008}+2^{2009}\) 

\(2\left(2^{2010}-M\right)=2+2^2+2^3+...+2^{2009}+2^{2010}\)

\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2+2^2+2^3+...+2^{2009}+2^{2010}\right)-\left(1+2+2^2+...+2^{2008}+2^{2009}\right)\)

\(2^{2010}-M=2^{2010}-1\)

\(M=2^{2010}-2^{2010}+1\)

\(M=1\)

17 tháng 9 2016

Đặt \(M=2^{2010}-A\)

Ta có:

\(A=2^{2009}+2^{2008}+...+2^1+2^0\)

\(\Rightarrow2A=2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=\left(2^{2010}+2^{2009}+...+2^2+2^1\right)-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(\Rightarrow A=2^{2010}-1\)

\(\Rightarrow M=2^{2010}-\left(2^{2010}-1\right)\)

\(\Rightarrow M=\left(2^{2010}-2^{2010}\right)+1\)

\(\Rightarrow M=1\)

12 tháng 9 2015

Đặt N = 22009 + 22008 + 22007 +......+ 21 + 20

2N = 22010 + 22009 + 22008 +.....+ 22 + 21

2N - N = 22010 - 20

=> N = 22010 - 1

=> M = 22010 - (22010 - 1)

=> M = 22010 - 22010 + 1

=> M = 1