Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2=\dfrac{1}{4}+\dfrac{1}{2}-2=\dfrac{3}{8}-2=\dfrac{3-16}{8}=-\dfrac{13}{8}\)
b: \(f\left(\sqrt{3}\right)=\dfrac{2\sqrt{3}}{\left(\sqrt{3}\right)^2+1}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
ĐKXĐ: \(m\ne-\dfrac{1}{3}\)
a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì
Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow3m+1=1\)
\(\Leftrightarrow3m=0\)
hay m=0(thỏa ĐK)
b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: F(2;1)
Để (P) đi qua điểm F(2;1) thì
Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot4=1\)
\(\Leftrightarrow3m+1=\dfrac{1}{4}\)
\(\Leftrightarrow3m=-\dfrac{3}{4}\)
\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)
a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)
b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)
a: ĐKXĐ: \(m\le5\)
b: ĐKXĐ: \(m\notin\left\{-1;1\right\}\)
c: ĐKXĐ: \(m\ne-2\)
Lời giải:
a. Tại $x_0=\sqrt{5}$ thì:
$y=f(x_0)=\frac{x_0}{2}-\sqrt{x_0^2-1}+2$
$=\frac{\sqrt{5}}{2}-\sqrt{5-1}+2=\frac{\sqrt{5}}{2}$
b. Tại $x=\frac{1}{4}$ thì $x^2-1=\frac{-15}{16}< 0$ nên căn thức $\sqrt{x^2-1}$ không xác định. Do đó không tính được.