Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a-b=6 => a=6+b thế vào BT trên ta có:
D=\(\frac{3\left(6+b\right)-6}{2\left(6+b\right)+b}-\frac{4b+6}{6+b+3b}\)
= \(\frac{18+3b-6}{12+2b+b}-\frac{4b+6}{6+4b}\)
= \(\frac{3b+12}{3b+12}-\frac{4b+6}{4b+6}\)
= 1-1 =0
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
b.\(ĐK:x;y\in Z^+;x;y\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)
\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)
\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)
\(\Leftrightarrow x=\dfrac{5y}{y-5}\)
\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )
Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1:
\(y-5=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm ) ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )
Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:
\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)
Câu a mik ko bt nên bạn tham khảo nhé:
https://hoc24.vn/cau-hoi/cho-a-b-c-0-va-day-ti-so-dfrac2bc-aadfrac2c-babdfrac2ab-cctinh-p-dfracleft3a-2brightleft3b-2crightleft.177725456910
\(2a=3b=4c\\ \Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2b}{8}=\dfrac{2c}{6}=\dfrac{a+b-c}{7}=\dfrac{a+2b-2c}{8}\\ \Leftrightarrow A=\dfrac{a+b-c}{a+2b-2c}=\dfrac{7}{8}\)
ta có
\(A=\frac{3a-2b}{2a-3b}=\frac{\frac{3a}{b}-2}{\frac{2a}{b}-3}=\frac{\frac{3.5}{6}-2}{\frac{2.5}{6}-3}=\frac{\frac{1}{2}}{-\frac{4}{3}}=-\frac{3}{2}\)
a-b=7 nên a=b+7
\(P=\dfrac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\dfrac{3b-b-7}{2b-7}=1+1=2\)
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
a-b=6
nên a=b+6
\(D=\dfrac{3\left(b+6\right)-6}{2\left(b+6\right)+b}-\dfrac{4b+6}{b+6+3b}\)
\(=\dfrac{3b+18-6}{2b+12+b}-1\)
\(=\dfrac{3b+12}{3b+12}-1=0\)