K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Ta có:\(\frac{3a-b}{2a+15}=\frac{3a-b}{2a+a-b}=\frac{3a-b}{3a-b}=1\)

          \(\frac{3b-a}{2b-15}=\frac{3b-a}{2b-\left(a-b\right)}=\frac{3b-a}{3b-a}=1\)  

=>P=1+1=2

10 tháng 2 2018

Ta có a = 15 + b

=> \(\frac{3a-b}{2a+15}+\frac{3b-a}{2b-15}\) = \(\frac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\frac{3b-\left(15+b\right)}{2b-15}\)

\(\frac{45+3b-b}{30+2b+15}+\frac{3b-15-b}{2b-15}\)

\(\frac{45+2b}{45+2b}+\frac{2b-15}{2b-15}\)= 1 + 1 = 2

10 tháng 8 2017

ta có : \(a-b=15\Leftrightarrow a=15+b\)

thay vào \(P\) ta có \(P=\dfrac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\dfrac{3b-\left(15+b\right)}{2b-15}\)

\(P=\dfrac{45+3b-b}{30+2b+15}+\dfrac{3b-15-b}{2b-15}=\dfrac{2b+45}{2b+45}+\dfrac{2b-15}{2b-15}\)

\(P=1+1=2\) vậy \(P=2\) với \(a-b=15\)

10 tháng 8 2017

Thay a-b=15 vào P có:

\(P=\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)

\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)

=1+1=2

Vậy P=2 TM đk a-b=15;\(a\ne-7,5;b\ne7,5\)

12 tháng 2 2017

Từ a-b=15 => a=15+b thay vào P ta được P=2

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)

8 tháng 8 2017

\(\left\{{}\begin{matrix}A=5x^4-7x^2+4xy+y^2\\B=-9x^4-4xy-7y^2\end{matrix}\right.\)

\(A+B=5x^4-7x^2+4xy+y^2-9x^4-4xy-7y^2\)

\(A+B=\left(5x^4-9x^4\right)+\left(4xy-4xy\right)-\left(7y^2-y^2\right)-7x^2\)

\(A+B=-4x^4-6y^2-7x^2\)

Vì:

\(x^4\ge0\Rightarrow-4x^4\le0\)

\(\left\{{}\begin{matrix}6y^2\ge0\\7x^2\ge0\end{matrix}\right.\)

\(\Rightarrow-4x^4-6y^2-7x^2\le0\)

Vậy A và B không cùng dương

8 tháng 8 2017

\(P=\dfrac{3a-b}{2a+15}+\dfrac{3b-a}{2b-15}\)

\(P=\dfrac{3a-b}{2a+a-b}+\dfrac{3b-a}{2b-a+b}\)

\(P=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)

\(P=1+1=2\)

23 tháng 3 2018

Ta có: a-b=6 => a=6+b thế vào BT trên ta có:

D=\(\frac{3\left(6+b\right)-6}{2\left(6+b\right)+b}-\frac{4b+6}{6+b+3b}\)

\(\frac{18+3b-6}{12+2b+b}-\frac{4b+6}{6+4b}\)

\(\frac{3b+12}{3b+12}-\frac{4b+6}{4b+6}\)

= 1-1 =0

23 tháng 3 2018

Cảm ơn bạn nhé!

Ta có  a - b = 7 => a = 7 + b 

Thay a = 7+b vào C có : 

\(C=\frac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-7-b}{2b-7}\)

\(C=\frac{21+3b-b}{14+2b+7}+\frac{2b-7}{2b-7}\)

\(C=\frac{21+2b}{21+2b}+1=1+1=2\)

Vậy \(C=2\)

7 tháng 1 2019

Ta có:\(a-b=7\Leftrightarrow7=a-b\)

           Thay \(7=a-b\)vào biểu thức,ta được:

                \(\frac{3a-b}{2a+7}+\frac{3a-b}{2b-7}=\frac{3a-b}{2a+a-b}+\frac{3a-b}{2b-a+b}\)

                                                       \(=\frac{3a-b}{3a-b}+\frac{3b-a}{3b-a}\)

                                                       \(=1+1\)

                                                       \(=2\)

                                        Vậy giá trị của biểu thức C=2

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)