Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{3a-b}{2a+15}=\frac{3a-b}{2a+a-b}=\frac{3a-b}{3a-b}=1\)
\(\frac{3b-a}{2b-15}=\frac{3b-a}{2b-\left(a-b\right)}=\frac{3b-a}{3b-a}=1\)
=>P=1+1=2
BT1 : Tính giá trị của biểu thức ;
Thay 7 = a -b vào biểu thức B ,có :
\(\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)
\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3a-a}\)
\(=1+1\)
= 2
Vậy giá trị của biểu thức B là 2 với a- b=7
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
a-b=7 nên a=b+7
\(P=\dfrac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\dfrac{3b-b-7}{2b-7}=1+1=2\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2b+2c+2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b=3a-c\)\(\dfrac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c=3b-a\)
\(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a=3c-b\)
\(P=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{2a.2b.2c}=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{8abc}\)
\(\left\{{}\begin{matrix}A=5x^4-7x^2+4xy+y^2\\B=-9x^4-4xy-7y^2\end{matrix}\right.\)
\(A+B=5x^4-7x^2+4xy+y^2-9x^4-4xy-7y^2\)
\(A+B=\left(5x^4-9x^4\right)+\left(4xy-4xy\right)-\left(7y^2-y^2\right)-7x^2\)
\(A+B=-4x^4-6y^2-7x^2\)
Vì:
\(x^4\ge0\Rightarrow-4x^4\le0\)
\(\left\{{}\begin{matrix}6y^2\ge0\\7x^2\ge0\end{matrix}\right.\)
\(\Rightarrow-4x^4-6y^2-7x^2\le0\)
Vậy A và B không cùng dương
\(P=\dfrac{3a-b}{2a+15}+\dfrac{3b-a}{2b-15}\)
\(P=\dfrac{3a-b}{2a+a-b}+\dfrac{3b-a}{2b-a+b}\)
\(P=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)
\(P=1+1=2\)
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)
ta có : \(a-b=15\Leftrightarrow a=15+b\)
thay vào \(P\) ta có \(P=\dfrac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\dfrac{3b-\left(15+b\right)}{2b-15}\)
\(P=\dfrac{45+3b-b}{30+2b+15}+\dfrac{3b-15-b}{2b-15}=\dfrac{2b+45}{2b+45}+\dfrac{2b-15}{2b-15}\)
\(P=1+1=2\) vậy \(P=2\) với \(a-b=15\)
Thay a-b=15 vào P có:
\(P=\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)
\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)
=1+1=2
Vậy P=2 TM đk a-b=15;\(a\ne-7,5;b\ne7,5\)