Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 1999 * 2000² + 1999 * 2001 - 2001 * 2000² + 2001 * 1999
Nhóm các số hạng có chứa 2000² lại với nhau:
M = (1999 * 2000² - 2001 * 2000²) + (1999 * 2001 + 2001 * 1999)
Đặt nhân tử chung 2000² ra ngoài:
M = 2000² * (1999 - 2001) + 2 * (1999 * 2001)
M = 2000² * (-2) + 2 * (1999 * 2001)
Ta thấy 1999 = 2000 - 1 và 2001 = 2000 + 1. Áp dụng hằng đẳng thức (a - b)(a + b) = a² - b²:
M = -2 * 2000² + 2 * [(2000 - 1)(2000 + 1)]
M = -2 * 2000² + 2 * (2000² - 1²)
M = -2 * 2000² + 2 * 2000² - 2 * 1
M = -2
x(x – 1) – y(1 – x)
= x(x – 1) – y[–(x – 1)]
= x(x – 1) + y(x – 1)
= (x – 1)(x + y)
Tại x = 2001, y = 1999, giá trị biểu thức bằng:
(2001 – 1)(2001 + 1999) = 2000.4000 = 8000000
a) 15 . 91,5 + 150 . 0,85
= 15 . 91,5 + 15 . 8,5
= 15 ( 91,5 + 8,5 )
= 15 . 100 = 1500
b) x(x - 1) - y(1 - x)
= x(x - 1) + y(x - 1)
= (x + y) (x - 1)
Giá trị của biểu thức tại x = 2001 và y = 1999 là :
(2001 + 1999) (2001 - 1) = 4000 . 2000 = 8000000
a.
\(x^2+xy+x=x\left(x+y+1\right)\)
Tại \(x=77;y=22\Rightarrow x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)
b.
\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)
\(=\left(53-3\right)^2=50^2=2500\)
c.
\(x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x+y\right)\left(x-1\right)\)
\(=\left(2001+1999\right)\left(2001-1\right)=4000.2000=8000000\)
a) 15 . 91,5 + 150 . 0,85 = 15 . 91,5 + 15 . 8,5
= 15(91,5 + 8,5) = 15 . 100 = 1500
b) x(x - 1) - y(1 - x) = x(x - 1) - y[-(x - 1)]
= x(x - 1) + y(x - 1)
= (x - 1)(x + y)
Tại x = 2001, y = 1999 ta được:
(2001 - 1)(2001 + 1999) = 2000 . 4000 = 8000000
\(102^2-2^2=\left(102-2\right)\left(102+2\right)=100.104=10400\)
A= 20054-2004.2006.(20052+1)
=\(2005^4-\left(2005-1\right)\cdot\left(2005+1\right)\cdot\left(2005^2+1\right)\)
=\(2005^4-\left(2005^2-1\right)\cdot\left(2005^2+1\right)\)
=\(2005^4-\left(2005^4-1\right)\)
=1
B=1999.(20002+2001)-2001.(20002-1999)
=\(1999\cdot2000^2+1999\cdot2001-2001\cdot2000^2+2001\cdot1999\)
=\(2000^2\left(1999-2001\right)+2\cdot1999\cdot2001\)
=\(2000^2\cdot\left(-2\right)+2\cdot1999\cdot2001\)
=\(2000^2\cdot\left(-2\right)+2\left(2000-1\right)\left(2000+1\right)\)
=\(-2\cdot2000^2+2\left(2000^2-1\right)\)
=\(-2\cdot2000^2+2\cdot2000^2-2\)
=-2