Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 17x(1313/5151+1111/3434):177/12
=17x(13/51+11/34):59/4
=17x(26/102+33/102)x4/59
=17x59/102x4/59
=59/6x4/59
=4/6
=2/3
k cho mình nha
\(17\times\left(\frac{1313}{5151}+\frac{1111}{3434}\right)\div\frac{177}{12}\)
\(=17\times\left(\frac{13}{51}+\frac{11}{34}\right)\div\frac{177}{12}\)
\(=17\times\frac{59}{102}\div\frac{177}{12}\)
\(=\frac{59}{6}\div\frac{177}{12}\)
\(=\frac{59}{6}\times\frac{12}{177}\)
\(=\frac{2}{3}\)
A = 17 \(\times\) ( \(\dfrac{1313}{5151}\) + \(\dfrac{1111}{3434}\)): \(\dfrac{177}{12}\)
A = 17 \(\times\) (\(\dfrac{1313:101}{5151:101}\) + \(\dfrac{1111:101}{3434:101}\)) : \(\dfrac{177}{12}\)
A = 17 \(\times\)( \(\dfrac{13}{51}\) + \(\dfrac{11}{34}\)): \(\dfrac{177}{12}\)
A = 17 \(\times\) (\(\dfrac{13\times2}{51\times2}\)+ \(\dfrac{11\times3}{34\times3}\)) : \(\dfrac{177}{12}\)
A = 17 \(\times\)( \(\dfrac{26}{102}\) + \(\dfrac{33}{102}\)): \(\dfrac{177}{12}\)
A = 17 \(\times\) \(\dfrac{59}{102}\): \(\dfrac{177}{12}\)
A = \(\)\(\dfrac{59}{6}\) \(\times\) \(\dfrac{12}{177}\)
A = \(\dfrac{2}{3}\)
17 x ( 1313/5151 + 1111/3434) : 177/12
= 17 x ( 13/51 + 11/34 ) : 59/4
= 17 x 59/102 : 59/4
= (17 x 59/102) : 59/4
= 59/6 : 59/4
=2/3
\(=\dfrac{3}{4}-\dfrac{5}{6}\times\dfrac{7}{24}\times\dfrac{12}{7}=\dfrac{3}{4}-\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{3}{4}-\dfrac{5}{6}\left(\dfrac{1}{6}+\dfrac{1}{8}\right):\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\cdot\dfrac{7}{24}\cdot\dfrac{12}{7}\)
\(=\dfrac{3}{4}-\dfrac{5}{12}\)
\(=\dfrac{4}{12}=\dfrac{1}{3}\)
A = \(\dfrac{2}{35}\) + \(\dfrac{4}{77}\) + \(\dfrac{2}{143}\) + \(\dfrac{4}{221}\) + \(\dfrac{2}{323}\) + \(\dfrac{4}{437}\) + \(\dfrac{2}{575}\)
A = \(\dfrac{2}{5\times7}\)+\(\dfrac{4}{7\times11}\)+\(\dfrac{2}{11\times13}\)+\(\dfrac{4}{13\times17}\)+\(\dfrac{2}{17\times19}\)+\(\dfrac{4}{19\times23}\)+\(\dfrac{2}{23\times25}\)
A = \(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{13}\)+\(\dfrac{1}{13}\)-\(\dfrac{1}{17}\)+\(\dfrac{1}{17}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{23}\)+\(\dfrac{1}{23}\)-\(\dfrac{1}{25}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{25}\)
A = \(\dfrac{4}{25}\)
17 \(\times\) ( \(\dfrac{1313}{5151}\) + \(\dfrac{1111}{3434}\)) : \(\dfrac{117}{512}\)
= 17 \(\times\) ( \(\dfrac{1313:101}{5151:101}\) + \(\dfrac{1111:101}{3434:101}\)) : \(\dfrac{117}{512}\)
= 17 \(\times\) ( \(\dfrac{13}{51}\) + \(\dfrac{11}{34}\)): \(\dfrac{117}{512}\)
= 17 \(\times\) \(\dfrac{59}{102}\) \(\times\) \(\dfrac{512}{117}\)
= \(\dfrac{1003}{102}\) \(\times\) \(\dfrac{512}{117}\)
= \(\dfrac{15104}{351}\)