Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AD là phân giác góc B A C ^ nên ta có: B D D C = A B A C = 15 20 = 3 4
⇒ B D D C = 3 4 ⇒ B D B D + D C = 3 4 + 3 = 3 7 ⇔ B D B C = 3 7 ⇒ x 28 = 3 7
=> x = 12cm => y = 28 – x = 16 cm
Vậy x = 12cm; y = 16cm
Đáp án: D
Trong tam giác ABC, ta có: MN // BC
Suy ra:
Trong tam giác PQR, ta có: EF // QR
Suy ra:
Giả sử hình thang ABCD, đường trung bình MN \(\left(M\in AD;N\in BC\right)\) và AC cắt MN tại P
Ta có \(\left\{{}\begin{matrix}MP+PN=10\\MP-PN=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}MP=\left(10+2\right):2=6\left(cm\right)\\PN=10-6=4\left(cm\right)\end{matrix}\right.\)
Vì MN là đtb nên: \(MN//AB//CD;MN=\dfrac{AB+CD}{2}.hay.AB+CD=2MN=20\)
\(\left\{{}\begin{matrix}AM=MD\\MP//CD\end{matrix}\right.\Rightarrow AP=PC\Rightarrow PM\) là đtb \(\Delta ADC\)
\(\Rightarrow2PM=DC\Rightarrow DC=2\cdot6=8\left(cm\right)\\ \Rightarrow AB=20-8=12\left(cm\right)\)
Vậy 2 đáy hình thang là 8;12(cm)
ABDABD^ = ˆBDEBDE^, lại so le trong
=> AB // DE
=> ∆ABC ∽ ∆EDC
=> ABEDABED = BCDCBCDC = ACECACEC
=> 3636 = x3,5x3,5 = 2y2y
=> x = 3.3,563.3,56 = 1.75;
y = 6.236.23 = 4
vì góc ADB = góc BDE
=>AB // DE (so le trong)
vì AB//DE nên theo định lí ta - lét ta có :
\(\dfrac{CB}{CE}\) = \(\dfrac{CA}{CD}\)
=>\(\dfrac{x}{y}\) = \(\dfrac{2}{3,5}\) = \(\dfrac{4}{7}\)
vậy chiều dài CB là 4
CE là 7
Theo tính chất tpg của tam giác, ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{AB}{x}=\dfrac{AC}{y}=\dfrac{15+20}{x+y}=\dfrac{35}{28}\) = 1,25
\(\Rightarrow x=\dfrac{15}{1,25}=12cm\)
\(\Rightarrow y=\dfrac{20}{1,25}=16cm\)
\(\RightarrowĐáp.án.D\)
a) Trong hình vẽ có 3 tam giác: ΔABD, ΔCBD, ΔABC
ΔABD và ΔACB có
∠B = ∠C
∠A chung
⇒ ΔABD ∼ ΔACB (g.g)
b) Theo a ta có :
c) Do BD là tia phân giác của góc B nên theo tính chất đường phân giác ta có:
a) Trong hình vẽ có 3 tam giác: ΔABD, ΔCBD, ΔABC
ΔABD và ΔACB có
∠B = ∠C
∠A chung
⇒ ΔABD ∼ ΔACB (g.g)
b) Theo a ta có :
c) Do BD là tia phân giác của góc B nên theo tính chất đường phân giác ta có:
Áp dụng hệ quả định lí Ta – lét ta có:
- Hình a:
- Hình b:
- Hình c: