K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

Miền cần tính diện tích được thể hiện trên Hình 10:

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

(vì tiếp tuyến với đồ thị của Giải sách bài tập Toán 12 | Giải sbt Toán 12

tại điểm (2;3/2) có phương trình là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

11 tháng 8 2017

a) Đáp số: 1/6

b) Đáp số: 937/12.

Hướng dẫn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Đáp số: 2

Hướng dẫn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) π/2 - 1

Hướng dẫn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đặt x = tan t để tính Giải sách bài tập Toán 12 | Giải sbt Toán 12

e) Đáp số: 27/4

Hướng dẫn: Phương trình tiếp tuyến tại (-1; -2) là y = 3x + 1. Do đó, diện tích :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

18 tháng 12 2017

Đáp số: 27/4

Hướng dẫn: Phương trình tiếp tuyến tại (-1; -2) là y = 3x + 1. Do đó, diện tích :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

12 tháng 2 2018

 

Giải bài 2 trang 121 sgk Giải tích 12 | Để học tốt Toán 12

27 tháng 4 2017

Hỏi đáp Toán

31 tháng 5 2017

Đáp án D

18 tháng 12 2019

1/2

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

30 tháng 8 2017

Đáp số: 2

Hướng dẫn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

30 tháng 6 2018

Hai hàm số y = | x 2  – 1| và y = 5 + |x| đều là hàm số chẵn. Miền cần tính diện tích được thể hiện ở Hình 8. Do tính đối xứng qua trục tung, ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12