K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

các bạn trả lời nhanh nha

16 tháng 12 2019

\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)tương tự những cái kia rồi triệt tiêu còn phân thức đầu vs cuối

14 tháng 12 2017

Ta có: \(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+.....+\frac{1}{\left(x+9\right)\left(x+11\right)}\)

\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+....+\frac{1}{x+9}-\frac{1}{x+11}\)

\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+11}\)

\(\Rightarrow A=\frac{x+11-x+1}{\left(x+1\right)\left(x+11\right)}=\frac{12}{\left(x+1\right)\left(x+11\right)}\)

29 tháng 11 2016

 \(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+11\right)}\)

\(=\frac{1+1+1+1+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)

\(=\frac{5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)

\(=\frac{5}{\left(x+1\right)\left(x+11\right)\left(x+3\right)\left(x+9\right)\left(x+5\right)\left(x+7\right)}\)

\(=\frac{5}{\left(x^2+11x+x+11\right)\left(x^2+9x+3x+27\right)\left(x^2+7x+5x+35\right)}\)

\(=\frac{5}{\left(x^2+12x+11\right)\left(x^2+12x+27\right)\left(x^2+12x+35\right)}\)

29 tháng 11 2016

A=\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+11}\)

Rút gọn hết đi ta có \(\frac{1}{x+1}-\frac{1}{x+11}\)=\(\frac{x+11}{\left(x+1\right).\left(x+11\right)}-\frac{x+1}{\left(x+1\right).\left(x+11\right)}\)

A=\(\frac{x+11-x-1}{\left(x+1\right).\left(x+11\right)}\)

A=\(\frac{10}{x^2+12x+11}\)

27 tháng 12 2017

quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6

=1\x-1\x+6

=6\x(x+6)

27 tháng 12 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)

14 tháng 4 2019

bạn xem lại xem có nhầm đề ko nhé

2 tháng 12 2016

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

\(=\frac{1}{x}\)

2 tháng 12 2016

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

 

= \(\frac{1}{x}\)

21 tháng 11 2015

Ta có:  \(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\left(n\in N\right)\)

Như vậy,

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5}{x\left(x+5\right)}-\frac{x}{x\left(x+5\right)}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

21 tháng 11 2015

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}=\frac{x+6}{x.\left(x+6\right)}-\frac{x}{x.\left(x+6\right)}=\frac{6}{x^2+6x}\)

4 tháng 7 2018

a,\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

b,Áp dụng câu a:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

\(=\frac{1}{x}\)