Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)
\(\Rightarrow x=3k;y=2k;z=-2k\)
Ta có: \(x^2+3y^2-z^2=17\)
\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)
\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)
\(\Rightarrow17k^2=17\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
Khi k = 1 thì:
\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)
Khi k = -1 thì:
\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)
x và y tỉ lệ nghịch với 6 và 5
nên 6x=5y
=>x/5=y/6
y và z tỉ lệ nghịch với 4 và 3
nên 4y=3z
=>y/3=z/4
=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2
=>x=10; y=12; z=16
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)
\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)
Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)
Theo bài ra ta cs
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)
\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)
a) \(4x-2=x\)
\(4x-x=2\)
\(3x=2\)
\(x=\dfrac{2}{3}\)
b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)
Vậy hàm số cần tìm là \(y=3x\)
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x+y+z}{2+3+4}=\frac{28}{9}\)
\(x=\frac{28.2}{9}=\frac{56}{9}\)
\(y=\frac{28.3}{9}=\frac{28}{3}\)
\(z=\frac{28.4}{99}=\frac{112}{9}\)
Ap dung tinh chat day cac ti so bang nhau ta co
x/2=y/3=z/4=x+y+z/2+3+4=28/9
Suy ra x=28/9.2=56/9
y=28/9.3=28/3
z=28/9.4=112/9