Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2xy=3yz => x=3/2z
2xy=4zx=> y=2z
xyz=3
thế vào ta có:3/2z.2z.z=3=> z = 1
x = 3/2
y= 2
a)
\(2^{x+3}+5\cdot2^{x+2}=224\)
\(2^x\cdot2^3+5\cdot2^x\cdot2^2=224\)
\(2^x\cdot8+2^x\cdot20=224\)
\(2^x\cdot\left(20+8\right)=224\)
\(2^x\cdot28=224\)
\(2^x=8\)
\(x=3\)
2x+3+5*2x+2 = 224
VT=7*2x+2
pt trở thành 7*2x+2=224
<=>7*2x+2=25*7
<=>2x+2=25
<=>x+2=5
<=>x=3
pt <=> yz 2x - 3 =3 - 2x - 2z
=> 2x - 3 chia hết cho z
=> 2x - 3= k.z , k thuộc Z
pt <=> y. k = -k -2 (vì z=0 Không thỏa mãn)
2 chia hết cho k => k= 1 ; -1 ; 2 ; -2
* k = 1 => y=-3 , z = 1 ; x=2
* k= -1 => y=1; z = 1; x=1
* k=2 => y = -2 ; z = 1 , x =5/2(loại)
* k = -2 => y= 0 ; z = 0 ; x= 3/2 (loại)
Chắc là bài này là dạng toán Phương trình. Có j sai sót mong bạn thông cảm.
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/61835486860.html
không hiện link mình sẽ gửi qua tin nhắn
Bài làm:
Ta có: \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Leftrightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Thay vào ta được: \(xyz=\left(3k+1\right)\left(4k+2\right)\left(5k+3\right)=192\)
GPT ra được k = 1
=> \(\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
Trl :
https://olm.vn/hoi-dap/detail/104563324252.html
Bạn tham khảo !
Ta có : \(2xy=3yz=4zx\) => \(\frac{xy}{\frac{1}{2}}=\frac{yz}{\frac{1}{3}}=\frac{zx}{\frac{1}{4}}\)
Đặt \(\frac{xy}{\frac{1}{2}}=\frac{yz}{\frac{1}{3}}=\frac{zx}{\frac{1}{4}}=k\)
=> \(\hept{\begin{cases}xy=\frac{k}{2}\\yz=\frac{k}{3}\\zx=\frac{k}{4}\end{cases}}\)
=> \(xy\cdot yz\cdot xz=\frac{k}{2}\cdot\frac{k}{3}\cdot\frac{k}{4}\)
=> \(\left(xyz\right)^2=\frac{k^3}{24}\)
=> \(3^2=\frac{k^3}{24}\)
=> \(k^3=24\cdot9\)
=> \(k^3=216\)
=> \(k=6\)
+) \(xy=\frac{k}{2}=\frac{6}{2}=3\); \(yz=\frac{k}{3}=\frac{6}{3}=2\); \(zx=\frac{k}{4}=\frac{6}{4}=\frac{3}{2}\)
Nếu xyz = 3 cùng với xy = 3 thì z = 1,cùng với yz = 2 thì x = \(\frac{3}{2}\),cùng với zx = \(\frac{3}{2}\)thì y = 2
Vậy \(\left(x,y,z\right)=\left(\frac{3}{2},2,1\right)\)