K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để y là số nguyên thì \(x+1\inƯ\left(3\right)\)

\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{0;-2;2;-4\right\}\)

20 tháng 7 2016

Ta có: (x+2)(y+1)=12(1)

Vì x,y thuộc Z => x+2; y+1 thuộc Z(2)

Từ (1)(2) => x+2; y+1 \(\inƯ_{\left(12\right)}=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Ta có bảng sau

x+2y+1xyKết luận
1

12

-111t/mãn
-1-12-3-13t/mãn
2605t/m
-2-6-4-7t/m
3413t/m
-3-4-5-5t/m
4322t/m
-4-3-6-4t/m
6241t/m
-6-2-8-3t/m
121100t/m
-12-1-12-2t/m

Vậy các cặp số (x;y) là (-1;11);(-3;-13);(0;5);(-4;-7);(1;3);(-5;-5);(2;2);(-6;-4);(4;1);(-8;-3);(10;0);(-12;-2)

 

20 tháng 7 2016

Ta có:12=1.12=12.1=(-1).(-12)=(-12).(-1)

       Do đó ta có bảng sau:

x+2112-1-12
y+1121-12-1
x-110-3-14
y110-13-2

        Vậy cặp (x;y) thỏa mãn là:(-1;11)(10;0)(-3;-13)(-14;-2)

13 tháng 2 2017

1+x+x^2+x^3=(x+1)+x^2(x+1)=(x+1)(x^2+1)=y^2

với x=-1 có y=0 với x khác -1

có (x^2+1;x+1)=2=> do VP CP =>có hai trường hợp xẩy ra

TH1: \(\left(I\right)\left\{\begin{matrix}x+1=k^2\\x^2+1=t^2\end{matrix}\right.\)=> x=0 duy nhất => y=+-1

TH2: \(x^2+1=\left(x+1\right)\Leftrightarrow x^2-x=0=>x=0,1\)=>y=+-2

Kết luận: (x,y)=(-1,0);(0,+-1);(1,+-2)

2 tháng 2 2022

Ta có nhận xét sau:

     \(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)

Tương tự với các phân thức còn lại

Ta đặt:

     \(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)

     \(\Rightarrow abc=1\) và \(a,b,c>0\)

Biểu thức P trở thành:

     \(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)

Dễ thấy:

     \(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)

     \(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)

Do đó:

     \(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

2 tháng 3 2016

x+y=xy \(\Leftrightarrow\) x+y-xy = 0 
\(\Leftrightarrow\) (x-xy)+y -1 = -1 
\(\Leftrightarrow\) x(1-y)-(1-y)=-1 
\(\Leftrightarrow\) (1-y)(x-1)=-1 
\(\Leftrightarrow\) (1-y) và (x-1) thuộc ước của -1 
\(\Leftrightarrow\) 1-y = 1 và x-1=-1 
hoặc 1-y=-1 và x-1 =1 
\(\Leftrightarrow\) y=0 và x bằng 0 
hoặc y =2 va x=2 
vậy có 2 cặp x,y thỏa mãn là(0;0) và (2;2)

6 tháng 4 2016

\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)

Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)

và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)

\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)

Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)

\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)

\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\)\(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)

Xét hàm số :

\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) ,  (0<\(t\le\frac{1}{9}\)

Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\)\(t\in\left(0;\frac{1}{9}\right)\)
NV
16 tháng 1 2021

\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 1 2021

Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)

Do đó:

\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)

Đẳng thức xảy ra khi $x=y=z=1.$

23 tháng 12 2020

`x,y,z in Z` và `6^x=1+2^y+3^z`

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)

\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)

\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)