Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=2019\Rightarrow\left(x+y\right)^2=x^2+2xy+y^2=2019^2=4076361\)
vì \(x^2+y^2>=2xy\Rightarrow x^2+2xy+y^2=\left(x^2+y^2\right)+2xy>=2xy+2xy=4xy\)
\(\Rightarrow4076361>=4xy\Rightarrow1019090,25>=xy\)
dấu = xảy ra khi \(x=y=\frac{2019}{2}=1009,5\)
vậy max của xy là 1019090,25 khi x=y=1009,5
Ta dễ dàng thấy được \(2^y\ge2\Rightarrow y\ge1\)
Xét \(y=1\Rightarrow x=0\)
Xét \(y>1\Rightarrow2^y⋮4\)
Ta chia 2 trường hợp
TH 1: \(x=2k+1\)
\(\Rightarrow5^{2k+1}+1=2.3.\left(5^{2k}-5^{2k-1}+...\right)\)
Nhận xét VT có ít nhất trong tích 1 số lẻ (3) còn vế phải là luỹ thừa của 2 nên không tồn tại giá trị thoả mãn bài toán.
TH 2: \(x=2k\left(k\ne0\right)\)
\(\Rightarrow5^{2k}+1=25^k+1\equiv2\left(mod4\right)\)
Ta có VT không chia hết cho 4 còn VP chia hết cho 4 nên loại trường hợp này.
Vậy PT có nhiệm là: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Câu hỏi của Phan Minh Trung - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Trần Đức Mạnh - Toán lớp 7 | Học trực tuyến
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài
\(\left(x+y\right)^2+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow x^2+y^2+2xy+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow xy^2+x^2-8y^2-8x+2xy+2y^3=0\)
\(\Leftrightarrow x\left(y^2+x\right)-8\left(y^2+x\right)+2y\left(y^2+x\right)=0\)
\(\Leftrightarrow\left(y^2+x\right)\left(x-8+2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2+x=0\\x+2y=8\end{matrix}\right.\)
TH1: \(y^2+x=0\Leftrightarrow x=y=0\), thỏa mãn.
TH2: \(x+2y=8\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
Vậy pt đã cho có các cặp nghiệm tự nhiên (x; y) là:
\(\left(x;y\right)\in\left\{\left(0;0\right);\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
10x2+29xy+21y2=2001
. =>10x2+15xy+14xy+21y2=2001.
=>5x(2x+3y)+7y(2x+3y)=2001.
=>(5x+7y)(2x+3y)=2001=1.2001=2001.1=3.667=667.3