Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\dfrac{-3x}{x+4}\)
P \(\in\) Z ⇔ -3\(x\) ⋮ \(x+4\) ⇒ -3( \(x\) +4) +12 ⋮ \(x+4\)
⇒ 12 ⋮ \(x\) + 4
⇒ \(x\) + 4 \(\in\) { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6}
\(\Rightarrow\) \(x\) \(\in\) { -16; -10; -8; -7; -6; -5; -3; -2; -1; 0; 2}
Để: \(\dfrac{x+3}{2x}\) ∈ Z thì:
x + 3 ⋮ 2x
=> 2. (x + 3) ⋮ 2x
=> 2x + 6 ⋮ 2x
=> 6 ⋮ 2x
=> 2x ∈ Ư (6)
=> 2x ∈ {1; -1; 2; -2; 3; -3; 6; -6}
Mà x ∈ Z => 2x ⋮ 2
=> 2x ∈ {2; -2; 6; -6}
=> x ∈ {1; -1; 3; -3}
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
a, \(A=\dfrac{2x^3+x^2+2x+4}{2x+1}\\ =\dfrac{2x^3+x^2+2x+1+3}{2x+1}\\ =\dfrac{\left(2x+1\right)\left(x^2+1\right)+3}{2x+1}\\ =x^2+1+\dfrac{3}{2x+1}\)
Để \(A\in Z\) thì \(2x+1\inƯ\left(3\right)\)= \(\left\{\pm1;\pm3\right\}\)
=> \(2x\in\left\{-4;-2;0;2\right\}\) \(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)
b, Để A vô nghĩa thì 2x+1=0 \(\Leftrightarrow\)x=\(\dfrac{-1}{2}\)
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)
ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si \(\sqrt{ab}\)≤\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)≤\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
\(\dfrac{P}{\sqrt{2}}\)≤\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)
TXĐ : \(x\ne\pm2\)
\(M=\left[\dfrac{1}{x+2}-\dfrac{2}{x-2}+\dfrac{x}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{10-x^2+\left(x-2\right)\left(x+2\right)}{x+2}\)
\(=\dfrac{x-2-2\left(x+2\right)+x}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{10-x^2+x^2-1}\)
\(=\dfrac{x-2-2x-4+x}{x-2}.\dfrac{1}{6}\)
\(=\dfrac{-6}{x-2}.\dfrac{1}{6}=\dfrac{1}{2-x}\)
Để \(\frac{-4}{x-5}\)là một số nguyên
\(\Rightarrow x-5\inƯ\left(-4\right)=\left\{-4,-1,1,4\right\}\)
Với x-5=-4 =>x=1
Với x-5=-1 =>x=4
Với x-5=1 =>x=6
Với x-5=4 =>x=9
Vậy x={1;4;6;9}
Ta có \(\frac{-4}{x-5}\)\(\Rightarrow-4⋮x-5\)\(\Rightarrow x-5\inƯ\left(-4\right)\)
Mà \(Ư\left(-4\right)là-4;-1;1;4\)nên TH1 : x - 5 = - 4 => x = 1
TH2 : x - 5 = -1 => x = 4
TH3 : x - 5 = 1 => x = 6
TH4 : x - 5 = 4 => x = 9
\(\dfrac{3}{\sqrt{x}-4}\in Z\Leftrightarrow3⋮\sqrt{x}-4\\ \Leftrightarrow\sqrt{x}-4\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\)
ĐK: \(x\ge0;x\ne16\)
\(\dfrac{3}{\sqrt{x}-4}\in Z\)
\(\Leftrightarrow\sqrt{x}-4\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\inƯ_3=\left\{1;3;5;7\right\}\)
\(\Leftrightarrow x\inƯ_3=\left\{1;9;25;49\right\}\)