K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

a, \(A=\dfrac{2x^3+x^2+2x+4}{2x+1}\\ =\dfrac{2x^3+x^2+2x+1+3}{2x+1}\\ =\dfrac{\left(2x+1\right)\left(x^2+1\right)+3}{2x+1}\\ =x^2+1+\dfrac{3}{2x+1}\)

Để \(A\in Z\) thì \(2x+1\inƯ\left(3\right)\)= \(\left\{\pm1;\pm3\right\}\)

=> \(2x\in\left\{-4;-2;0;2\right\}\) \(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)

b, Để A vô nghĩa thì 2x+1=0 \(\Leftrightarrow\)x=\(\dfrac{-1}{2}\)

7 tháng 6 2017

ths nha

17 tháng 1 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\) ( Chữa đề nhé.)

a) \(ĐKXĐ:x\ne-3;x\ne2\)

\(\text{Với }x\ne-3;x\ne2,\text{ ta có: }A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\\ =\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\\ =\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x-4}{x-2}\\ \text{Vậy }A=\dfrac{x-4}{x-2}\text{ với }x\ne-3;x\ne2\)

b) Lập bảng xét dấu:

x x-4 x-2 x-4 2 4 0 0 x-2 _ _ + _ + + 0 + _ +

\(\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)

Vậy để \(A>0\) thì \(x< 2\) hoặc \(x>4\)

c) \(\text{Với }x\ne-3;x\ne2\)

\(\text{Ta có : }A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}\\ =\dfrac{x-2}{x-2}-\dfrac{2}{x-2}=1-\dfrac{2}{x-2}\)

\(\Rightarrow\) Để A nhận giá trị nguyên

thì \(\Rightarrow\dfrac{2}{x-2}\in Z\)

\(\Rightarrow2⋮x-2\\ \Rightarrow x-2\inƯ_{\left(2\right)}\)

\(Ư_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\left(TM\right)\) \(1\left(TM\right)\) \(3\left(TM\right)\) \(4\left(TM\right)\)

\(\Rightarrow x\in\left\{-2;-1;1;2\right\}\)

Vậy với \(x\in\left\{-2;-1;1;2\right\}\)

thì \(A\in Z\)

17 tháng 1 2018

Câu 2:

a) \(ĐKXĐ:x\ne\dfrac{3}{2};x\ne1\)

\(\text{Với }x\ne\dfrac{3}{2};x\ne1,\text{ ta có : }B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\\ =\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}\right]:\left(\dfrac{3\left(1-x\right)}{1-x}+\dfrac{2}{1-x}\right)\\ =\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3-3x+2}{\left(1-x\right)}\\ =\dfrac{\left(-3x+5\right)\cdot\left(1-x\right)}{\left(2x-3\right)\left(x-1\right)\cdot\left(-3x+5\right)}\\ =-\dfrac{1}{2x-3}\)

Vậy \(B=-\dfrac{1}{2x-3}\) với \(x\ne\dfrac{3}{2};x\ne1\)

b) \(\text{Với }x\ne\dfrac{3}{2};x\ne1\)

Để \(B=\dfrac{1}{x^2}\)

\(\text{thì }\Rightarrow\dfrac{-1}{2x-3}=\dfrac{1}{x^2}\\ \Rightarrow2x-3=-x^2\\ \Leftrightarrow2x-3+x^2=0\\ \Leftrightarrow x^2-3x+x-3=0\\ \Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\left(TM\right)\)

Vậy với \(x=-1;x=3\) thì \(B=\dfrac{1}{x^2}\)

16 tháng 1 2018

sai đề

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

19 tháng 12 2020

a)

ĐKXĐ: \(x\ne-4\)

Để A nguyên thì \(3x+21⋮x+4\)

\(\Leftrightarrow3x+12+9⋮x+4\)

mà \(3x+12⋮x+4\)

nên \(9⋮x+4\)

\(\Leftrightarrow x+4\inƯ\left(9\right)\)

\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)

Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)

b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)

Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)

\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)

\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)

mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)

nên \(7⋮2x-1\)

\(\Leftrightarrow2x-1\inƯ\left(7\right)\)

\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)

hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)

Vậy: \(x\in\left\{1;0;4;-3\right\}\)

8 tháng 12 2016

a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)

b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)

Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)

\(\text{x}=1\) (loại)

Vậy giá trị nguyên tập hợp x là:

x=-5;3;9

1 tháng 7 2021

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)