Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)
\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)
\(A=\frac{x}{2x+1}\)
Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow2x=90\)
\(\Leftrightarrow x=45\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(\Rightarrow2x=90\)
\(\Rightarrow x=45\)
Vậy x = 45.
a, \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)
\(\Leftrightarrow98\left(2x+1\right)=99.2x\)
\(\Leftrightarrow2x=98\Rightarrow x=49\)
b: Đặt \(A=1-3+3^2-3^3+...+\left(-3\right)^x\)
\(=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^x\)
\(\Leftrightarrow-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}\)
\(\Leftrightarrow-3A-A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}-...-1\)
\(\Leftrightarrow-4A=\left(-3\right)^{x+1}-1\)
\(\Leftrightarrow A=\dfrac{\left(-3\right)^{x+1}-1}{-4}=\dfrac{-\left(-3\right)^{x+1}+1}{4}\)
\(\Leftrightarrow\dfrac{-\left(-3\right)^{x+1}+1}{4}=\dfrac{3^{2012}-1}{2}\)
\(\Leftrightarrow-\left(-3\right)^{x+1}+1=2\cdot3^{2012}-2\)
\(\Leftrightarrow-\left(-3\right)^{x+1}=2\cdot3^{2012}-3\)
\(\Leftrightarrow-\left(-3\right)^{x+1}=3\left(2\cdot3^{2011}-1\right)\)
\(\Leftrightarrow-\left(-3\right)^x=2\cdot3^{2011}-1\)
=>x=2010
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
\(a,\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left[x-1\right]\left[x+1\right]=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x^2=8^2\)
\(\Leftrightarrow x=\pm8\)
\(b,\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{7}{15}\)
\(\Leftrightarrow x=15\)
Vậy x = 15
Bài cuối tương tự
\(a.\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)
\(\Rightarrow99x=49.\left(2x+1\right)\)
\(\Rightarrow99x=98x+49\)
\(\Rightarrow x=49\)
Vậy : \(x=49\)
\(b.\)
\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)
Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)
\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)
\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)
\(\Rightarrow-3^{x+1}=-9^{1006}\)
\(\Rightarrow-3^{x+1}=-3^{2012}\)
\(\Rightarrow x+1=2012\)
\(\Rightarrow x=2012-1\)
\(\Rightarrow x=2011\)
Vậy : \(x=2011\)