Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow (4x^2-4xy+y^2)+2z^2+y^2-2z(2x-y)-6y-10z+34=0\)
\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+(y^2-6y+9)+(z^2-10z+25)=0\)
\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)
Vì \((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\). Do đó để \((2x-y-z)^2+(y-3)^2+(z-5)^2=0\) thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\)
\(\Rightarrow \left\{\begin{matrix} x=4\\ y=3\\ z=5\end{matrix}\right.\)
Khi đó:
\(S=(4-4)^{2018}+(3-4)^{2019}+(5-4)^{2020}=0+(-1)+1=0\)
Lời giải:
$4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0$
$(4x^2+y^2+z^2-4xy-4xz+2yz)+y^2+z^2-6y-10z+34=0$
$(2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0$
$(2x-y-z)^2+(y-3)^2+(z-5)^2=0$
Vì $(2x-y-z)^2\geq 0; (y-3)^2\geq 0; (z-5)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó bằng $0$
$\Rightarrow 2x-y-z=y-3=z-5=0$
$\Rightarrow y=3; z=5; x=4$
Khi đó:
$P=0^{2023}+(-1)^{2025}+(5-4)^{2027}=0$
\(\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2+10z+25\right)=0\)
\(\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z+5\right)^2=0\)
\(\left[{}\begin{matrix}2x-y-z=0\\y-3=0\\z+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\y=3\\z=-5\end{matrix}\right.\)
còn phần tính S bạn xem bạn có chép sai đề ko nha
Ta có:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)
\(\Leftrightarrow\) \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\) \(4x^2-\left(4xy+4xz\right)+\left(y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\) \(4x^2-4x\left(y+z\right)+\left(y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(\Leftrightarrow\) \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Mặt khác, ta lại có: \(\left[2x-\left(y+z\right)\right]^2\ge0;\) \(\left(y-3\right)^2\ge0\) và \(\left(z-5\right)^2\ge0\) với mọi \(x;\) \(y;\) \(z\)
nên \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Do đó, dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(\left[2x-\left(y+z\right)\right]^2=0;\) \(\left(y-3\right)^2=0\) và \(\left(z-5\right)^2=0\)
\(\Leftrightarrow\) \(2x-\left(y+z\right)=0;\) \(y-3=0\) và \(z-5=0\)
\(\Leftrightarrow\) \(x=\frac{y+z}{2};\) \(y=3\) và \(z=5\)
Khi đó, \(x=\frac{3+5}{2}=\frac{8}{2}=4\)
Thay các giá trị trên của các biến \(x;\) \(y;\) \(z\) lần lượt vào biểu thức \(Q\), ta được:
\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=2\)
Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)
Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)
\(=0+\left(-1\right)^{2018}+1^{2018}\)
\(=2\)