Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x( x - 2 ) + 10 - 5x = 0
<=> 3x( x - 2 ) - ( 5x - 10 ) = 0
<=> 3x( x - 2 ) - 5( x - 2 ) = 0
<=> ( x - 2 )( 3x - 5 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{3}\end{cases}}\)
5x - 10 - ( x - 2 )2 = 0
( 5x - 10 ) - ( x - 2 )2 = 0
5 ( x - 2 ) - ( x - 2 )2 = 0
( x - 2 ) ( 5 - x + 2 ) = 0
( x - 2 ) ( 3 - x ) = 0
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
\(\Rightarrow\hept{\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
Vậy x = 2 hoặc x = 3
#) TL :
a) x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3( x - 2 ) = 0
( x - 3)( x -2 ) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
b) Đag bí :)
Chúc bn hok tốt :3
b) \(x^2+11x+10=0\)
\(\Leftrightarrow x^2+10x+x+10=0\)
\(\Leftrightarrow x\left(x+10\right)+\left(x+10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-10\end{cases}}\)
\(x^2-5x+10=0\)
\(\Leftrightarrow x^2-\frac{2.5x}{2}+\frac{25}{4}+\frac{15}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2+\frac{15}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=-\frac{15}{4}\)( Vô lí )
Vậy ko tìm đc x
x.y-2-5x+10=0
xy-5x-2+10=0
x.(y-5) -8=0
x.(y-5)=8
=1x8
=8x1
=2x4
=4x2
=>{x;y}={1;13},{8;6},{2;9},{4,7}
chúc bạn học tốt và tích đúng cho m nha
a: Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b: Ta có: \(x^2-5x-6=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
\(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)\(=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{10\left(x-5\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{25\left(x+10\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+25\left(x+10\right)}{5x\left(x+5\right)}=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2-250+25x+250}{5x\left(x+5\right)}=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)\(=\frac{\left(x+5\right)^2}{5\left(x+5\right)}=\frac{x+5}{5}\)
b) \(x^2-3x=0\)\(\Leftrightarrow x\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
So sánh với ĐKXĐ, ta thấy \(x=0\)không thoả mãn
Thay \(x=3\)vào biểu thức ta được: \(P=\frac{3+5}{5}=\frac{8}{5}\)
c) Để \(P=-4\)thì \(\frac{x+5}{5}=-4\)\(\Leftrightarrow x+5=-20\)\(\Leftrightarrow x=-25\)( thoả mãn ĐKXĐ )
Vậy \(P=-4\)\(\Leftrightarrow x=-25\)
d) Để \(P\ge0\)thì \(\frac{x+5}{5}\ge0\)\(\Leftrightarrow x+5\ge0\)( vì \(5>0\))\(\Leftrightarrow x\ge-5\)
So sánh với ĐKXĐ, ta thấy x phải thoả mãn \(x>-5\)và \(x\ne0\)
Vậy \(P\ge0\)\(\Leftrightarrow\)\(x>-5\)và \(x\ne0\)
Bài làm :
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) Sửa đề : 5x3 + x2 - 4x + 9 = 0
<=>( 5x3 + 5 ) + (x2 - 4x +4)=0
<=> 5(x3 + 1) + (x-2)2 = 0
<=> 5(x+1)(x2 - x +1) + (x+2)2 =0
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)
x(x-2)-5x+10=0
x(x-2)-5(x-2)=0
(x-5)(x-2)=0
x-5=0 hoặc x-2=0
x=5 hoặc x=2
<=> x^2-2x-5x+10=0
<=>x^2-7x+10=0
<=>(x-5).(x-2)=0 ( dùng cách bấm nghiệm bằng máy tính mode-5-3 , rồi nhập hệ số )
<=>x-5=0 hoặc x-2=0
<=>x=5 <=>x=2
Vậy PT có nghiệm là x=5 ; x=2