K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

x.y-2-5x+10=0

xy-5x-2+10=0

x.(y-5) -8=0

x.(y-5)=8  

         =1x8

          =8x1

          =2x4

           =4x2

=>{x;y}={1;13},{8;6},{2;9},{4,7}

chúc bạn học tốt và tích đúng cho m nha

10 tháng 7 2018

a ) 

\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)

\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)

\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)

Thay \(x=-10;y=5\)vào A , ta được : 

\(A=-10\left(-10+5\right)\)

\(=-10.-5=50\)

Vậy \(A=50\)

10 tháng 7 2018

a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)

= x4 + xy - x4 + x2y - x2y + x2

= xy + x2

Thay x = –10 và y = 5 vào (1), ta được:

A = -10.5 + (-10)2 = -50 + 100 = 50

Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.

b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)

= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)

Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)

⇒x = 3/5

c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)

= (x – 1)2 + (y + 2)2

Vậy (x – 1)+ (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0

⇒ x = 1 hoặc y = -2

2 tháng 10 2021

Bài 2: Tính giá trị của biểu thức sau:

\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)

Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)

\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)

2 tháng 10 2021

Bài 4: Tìm x

a) \(9x^2+x=0\)

\(\Rightarrow x\left(9x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)

b) \(27x^3+x=0\)

\(\Rightarrow x\left(27x^2+1=0\right)\)

\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)

Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)

Vậy \(x=0\)

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

4 tháng 11 2017

Bài 1:

\(x^2-5x-6=0\)

\(\Leftrightarrow x^2+x-6x-6=0\)

\(\Leftrightarrow\left(x^2+x\right)-\left(6x+6\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-6\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)

Vậy x=-1; x=6

Bài 2:

a) Ta có: \(x+y=10\Leftrightarrow y=10-x\) (1)

Từ (1) thay vào \(P=xy\) ta được:

\(P=x\left(10-x\right)\)

\(\Leftrightarrow P=10x-x^2\)

\(\Leftrightarrow P=-x^2+10x-5^2+5^2\)

\(\Leftrightarrow P=-\left(x^2-10x+5^2\right)+5^2\)

\(\Leftrightarrow P=-\left(x-5\right)^2+25\)

Vậy GTLN của P=25 khi \(x-5=0\Leftrightarrow x=5\)

b) \(P=x^2-5x\)

\(\Leftrightarrow P=x^2-2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2\)

\(\Leftrightarrow P=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\)

Vậy GTNN của \(P=\dfrac{-25}{4}\) khi \(x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\)