Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)x^3 - 6x^2 +11x-6=0
<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0
<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0
<=>(x-1).(x^2 - 5x + 6)=0
<=>(x - 1).(x^2 - 2x - 3x + 6)=0
<=>(x - 1).[(x(x-2)-3(x-2)]=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0hoac x-2=0 hoac x-3=0
<=>x=1hoac x=2 hoac x=3
Bài 2:
a) \(11x^2-5x=0\)
\(\Leftrightarrow x\left(11x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\11x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\11x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{11}\end{cases}}\)
Vậy \(x=0\)hoặc \(x=\frac{5}{11}\)
b) \(x^3-6x^2+12x=8\)
\(\Leftrightarrow x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3.2.x^2+3.2^2.x-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Thực hiện phép tính ( tự làm nhé -- )
Tìm x
a) 11x2 - 5x = 0
⇔ x( 11x - 5 ) = 0
⇔ x = 0 hoặc 11x - 5 = 0
⇔ x = 0 hoặc x = 5/11
b) x3 - 6x2 + 12x = 8
⇔ x3 - 6x2 + 12x - 8 = 0
⇔ ( x - 2 )3 = 0
⇔ x - 2 = 0
⇔ x = 2
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
\(x^2+x-12=0\\ \Rightarrow\left(x^2+4x\right)-\left(3x+12\right)=0\\ \Rightarrow x\left(x+4\right)-3\left(x+4\right)=0\\ \Rightarrow\left(x-3\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
#) TL :
a) x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3( x - 2 ) = 0
( x - 3)( x -2 ) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
b) Đag bí :)
Chúc bn hok tốt :3
b) \(x^2+11x+10=0\)
\(\Leftrightarrow x^2+10x+x+10=0\)
\(\Leftrightarrow x\left(x+10\right)+\left(x+10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-10\end{cases}}\)